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Chapter 1

Introduction

This document contains a formal specification for the mode logic of a Flight Guidance System (FGS)

and a discussion of issues raised by writing the formal specification. A flight guidance system is an

example of life-critical code; this project aims to demonstrate the effectiveness of formal methods in

the requirements analysis and design of life-critical systems. The source document for our project

is "Specifying the Mode Logic of a Flight Guidance System in CORE," by Stephen Miller and Karl

Hoech, Rockwell-Collins.

1.1 Introduction to the Flight Guidance System

Most modern aircraft possess a computerized system, called a Flight Guidance System (FGS), that

uses commands from the pilots to select flight control laws for the aircraft. The resulting flight

commands can then be used as advisories for the pilots, or the advisories can be routed to an

autopilot which will automatically guide the aircraft.

An FGS consists of two broad parts: the mode logic and the flight control laws. The mode

logic comprises the possible settings of the FGS; it is altered by events such as pilot commands or

changes in monitored variables. The FGS reads the mode of the mode logic and then invokes the

corresponding set of flight control laws to generate pitch and roll commands to guide the aircraft.

These commands can be taken as advisories to the pilot; or, if the autopilot is turned on, the

commands can be executed by the aircraft without any human intervention.

The work on this task is based on the source document "Specifying the Mode Logic of a Flight

Guidance System in CORE," by Stephen Miller and Karl Hoech, which gives a description of a

simplified specification of a Flight Guidance System (FGS), using the CoRE specification method.

The CoRE FGS specification is designed to exhibit many of the difficulties that arise in specifying

an event-driven system such as an FGS. In particular, their model of the FGS is decomposed into

several concurrent (and hierarchical) state machines that are allowed to influence each other.

Miller and Hoech's specification deals only with normal behavior of the system, and does not

discuss how to deal with internal errors, such as component failures. The authors have released

this specification as a resource, on which to test various methods and tools. They state that their

specification undoubtedly has errors; this, however, enhances its value as a example on which to

compare the results of various methodologies. In addition, they propose and use certain extensions

to the CoRE method, some of which they define only informally. These extensions provide another

source of questions and comparisons.



In thisreport,weconstructaformalZspecificationbasedontheCoREFGS.Thereareat least
twoinequivalentwaysof formalizingthesemanticsofthesourcedocument,dependingonwhether
weusemicro-timesemanticsor not. In orderto translatethedocumentintoZ,wehavechosento
interprettheCoREFGSusing,to theextentpossible,theSCRdiscrete-timeformalmodel[3]. In
particular,wehavenot usedanymicro-timesemantics.Thisapproachis compatiblewith theZ
philosophyof specifyingstatesandtransitions.A complementaryinvestigationoftheCoREFGS
usingmicro-timesemanticsappearsin NaydichandNowakowski[6].

TheCoREnotationisveryreadable,andwearenotclaimingthat theZnotationismoresuited
forspecifyingthisFGS.WeareusingtheZ notationhereto expressa semanticdefinitionfor the
FGS,andalsoasinputto theZ/EVEStheoremprover[7,8,9].

Becausewewereonlygiventhepaperspecificationandwedidnot haveformaldefinitionsof
theseveralaspectsof theCoREFGS,wehavetranslatedthespecificationbyhand.However,the
translationcouldcertainlybeautomated.

1.2 The Use of Formal Methods in Software Specification

A formal specification of a system is a description given in a language that possesses a formally

defined and unambiguous syntax and semantics. The Z language [4, 10, 11] is an example of such a

language. A formal specification is thus a precisely described constraint on the system's behavior.

The process of formulating a formal specification of a system is useful in detecting ambiguities and

design flaws at an early stage in the li% cycle of a software product.

A formal specification allows us to perform certain kinds of type checks and consistency checks

on the specification. We may also desire to prove that certain invariants hold for all states of the

system. We can use automated tool support, such as Z/EVES [7, 8], to aid us in proving consistency

checks and invariants.

Once we have constructed an algorithm that implements the system, it is desirable to generate a

formal verification that the algorithm indeed satisfies the requirements of the specification. Formal

verification applies to all inputs to the system, and thus complements conventional trial-and-error

debugging methods, which can usually test only a certain sampling of the inputs.

1.3 Structure of This Document

Our report is structured as follows. Chapter 2 is an outline of the CoRE method, which was used by

Miller and Hoech to construct the source document. The canonical reference on CoRE is the Con-

sor'tinm Requirements Engineering Guidebook [1] (or "CORE Guidebook") by Faulk, Finneran, Kirby

and Moini. Chapter 3 is an introduction to the Flight Guidance System (FGS) that is specified in

Miller and Hoech's report [5]. Chapter 4 is a discussion of some questions that arose from our investi-

gations of the CoRE specification. Chapter 5 contains an outline of the Z specification language; for

further reading, there are two books by Spivey: Understanding Z [10] and The Z Reference Manual

[11], as well as aacky's The Way of Z [4]. Chapter 6 discusses our work in constructing a formal

specification of the FGS in Z. Chapter 7 contains conclusions and acknowledgments. Appendix A

contains the formal specification of the FGS in Z.



Chapter 2

Preliminaries on CoRE

2.1 Introduction

The CoRE (Consortium for Requirements Engineering) method [1], which is promoted by the Soft-

ware Productivity Consortium (SPC), is a method for developing and writing software requirements

in a reasonably formal yet readable manner. CoRE is a close relative of the Software Cost Reduction

(SCR) method [3]. The CoRE Guidebook [1] provides a detailed explanation of how to construct a

CoRE specification.

We will give a brief summary of the CoRE method (see [1] for more details). First, CoRE

is built on Parnas _ four-variable model of embedded-system behavior. In this model, a system is

viewed as interacting with the external world. The system monitors certain external quantities

(called monitored variables) and controls the values of other external quantities (called controlled

variables). The system is specified as a collection of relations between the monitored variables and

the controlled variables.

The monitored variables are external quantities, such as air pressure and altitude. From these,

the system derives inputs to the software itself; for instance, a sensor on the outside of the plane

measures a monitored quantity and then sends a binary number to the computer. The inputs to the

software itself, such as this binary number, are called input variables.

The system, based on the values of the input variables, generates values for the output variables.

These may again be binary numbers, which are then converted into values of the controlled variables;

for instance, the display of the air pressure in the cockpit is a controlled variable.

The crux of the four-variable model is that we should specify the behavior of the system in terms

of relations between the monitored and the controlled variables, rather than in terms of inputs

and outputs to the software itself. The four-variable model encourages us to write a high-level

specification of the system behavior, rather than attempting to implement design or hardware-level

decisions.

Once we have isolated the monitored and controlled variables, we must determine the constraints

on their values. Some of the constraints on the variables are imposed by environmental constraints.

For instance, the possible speed of an aircraft is limited by the mechanical properties of the aircraft.

Such constraints constitute the NAT relations on the variables, since they are "naturaF or external

constraints on the values of the variables.

Once we have found the NAT relations, we must isolate the relations between the monitored and

controlled variables that are to be imposed by the system itself. For instance, a gauge on a flight

control panel may be required by the system to display the altitude of the airplane, rounded off to



thenearesthundredfeet.Theserelations,whichthesoftware"requires"ofthevariables,arecalled
theREQ relations.

Finally, we must determine the relationship of the monitored variables to the inputs variables

(the IN relations) and the relationship of the output variables to the controlled variables (the 0 UT

relations). These are, of course, design-level decisions, based on the nature of the components used

to construct the system. We can analyze the REQ and NAT relations independently of the IN and

OUT relations. The specification of the REQ and NAT relations of the system constitutes the CoRE

behavioral model of the system.

CoRE builds an additional model, the CoRE class model, on top of the behavioral model, by

arranging the variables into classes in an object-oriented fashion. For each class, certain variables

are visible to other classes and can thus be exported.

Often, it is the case that the same expression involving monitored variables appears several times

in the specification. As a shorthand, we can introduce term variables which abbreviate expressions

of monitored variables, system modes, or other terms.

A state of the system consists of an assignment of a value to each variable of the system. The

state of the system changes exactly when the value of some variable changes. A change of a variable's

value constitutes an event.

The system's behavior may depend not only on the present state of the system, but also on

the previous values, or state history, of the system. The system can capture relevant state history

information using certain kinds of finite state machines called mode machines. In CORE, a mode

machine consists of a finite set of states called modes, a distinguished initial mode, a set of transition

events, and a set of mode transitions that express the effect of the events on the mode machine.

Thus, a mode machine is a finite state machine such that the behavior of the machine is defined

entirely in terms of the CoRE behavioral model, and also such that the machine does not actually

perform any actions, but only records state information. It is conceivable that a finite state machine

can have a command such as "drill the rock" as a state; but the mode machines in CoRE are not

allowed to behave in this fashion. The modes are merely information, which can be read by other

aspects of the system.

2.2 Tables

Much of a CoRE specification consists of tables. A table specifies the value of a variable according

to values of other variables and possibly events. There are three kinds of tables: condition, event,

and mode transition.

2.2.1 Condition Tables

A condition table for a variable gives a partition of the system state into mutually exclusive con-

ditions, and a value of the variable for each condition. The rows are usually used to partition the

possible states according to the mode values of one or more system modes. Note that every system

state must satisfy one, and only one, of the conditions in the table. For instance,

Condition Table for CondVar J

Mode = A Varl = T Varl = F I X I

Mode = B X X

CondVar Vall Val2 ]Val3 ]



gives the value of the variable CondVar in terms of the values of the values of Mode and Varl. If Mode

= A, then ifVarl = T, then CondVar =Vall; otherwise, ifVarl = F then CondVar = Val2. The X

means that if Mode = A then no condition can make CondVar equal to Val3. The second row, the

TRUE means that when Mode = B, there is no additional condition that must be satisfied to make

CondVar equal to Val3.

2.2.2 Event Tables

An event table for a variable tells us which events cause the variable to change, and tells us the

possible new values of the variable. As with condition tables, the rows are usually used to partition

the possible states according to the values of one or more mode machines.

Event Table _r EventVar

Mode = A Eventl Event2 X

Mode = B Event2 Eventl Event3

EventVar Vall Val2 Val3

The first row of this table means that if Mode = A, then the occurrence of Eventl will cause

EventVar changes to Vall, and the occurrence of Event2 will cause EventVar changes to Val2. The

second row has a similar meaning. It is implicit that, if no listed event occurs, the variable's value

does not change.

2.2.3 Transition Tables

A transition table for a mode machine gives the possible transitions of that mode machine. For each

mode of the machine, the table gives events that can change the mode, and also the resulting mode

of the machine after the event has occurred.

Transition Table for Mode

From

A

A

B

C

Event To

Eventl B

Event2 C

Event2 C

Eventl A

The first line says that if Mode = A and Eventl occurs, then Mode changes to B. The other rows

have similar interpretations. It is also implicit in this table that if no listed event occurs, then the

value of Mode does not change.

2.2.4 Table Properties

An essential property of a table is that it be disjoint. For condition tables, this means that in each

row, the conditions listed must be mutually exclusive. For event or mode transition tables, this

means that for each mode value, no two of the listed events can occur simultaneously. As well,

condition tables must be complete; this means that all possible states of the system satisfy one of

the listed conditions.



2.3 Remarks on CoRE Semantics

The variables in CoRE are considered as functions of (continuous) time. Events in CoRE are assumed

to occur instantly, and to be atomic (indivisible). Note that the change of any variable (not just

a monitored variable) is an event and can be used to initiate another transition. The continuous

nature of the CoRE variables can lead to some questions about the timing of events that are created

by other events, since the CoRE model supposes that they happen simultaneously.

The CoRE Guidebook leaves several issues, such as timing of events, up to the authors of a

specification. One resolution is to use CoRE with the formal semantic model of SCR [3]. This

model uses discrete time polling cycles, rather than continuous time, and gives interpretations for

tables and so forth. A key feature of the SCR formal model is a partial ordering on the variables to

simulate one variable being dependent on another. The existence of such a partial order guarantees

that we can linearly order the updating of the variables in such a way that the new value of a given

variable depends only on old values of variables and new values of previously updated variables.

Given the SCR formal model, there is a set of static consistency checks (detailed in [3]) that can

be performed on the tables of the specification. These checks guarantee complete and deterministic

behavior of the system (that is, for each old system state and input event that can occur, there is

one, and only one, new system state that can result).

The authors of the CoRE FGS specification found the restrictions of the SCR formal model

inconvenient when they wrote their specification. In particular, they wanted to use concurrent mode

machines that could trigger transitions in each other; such machines cannot be partially ordered by

dependency.

In addition, the authors introduce several concepts that are not formally defined in CoRE (some

of which are explicitly prohibited in the SCR formal semantic model). In particular, the CoRE

guidebook does not address how to deal with simultaneous events (which, when interpreted in certain

ways, can lead to "cascading" internal transitions), "continuously occurring" events, or concurrent

mode machines that are allowed to drive each other, all of which play large roles in the CoRE FGS

specification. The authors of the CoRE FGS specification have written some informal semantics for

these concepts. Therefore, in order to provide a formal specification for the FGS, a formal semantics

must be chosen for these concepts.



Chapter 3

The Flight Guidance System

3.1 Outline of the FGS

Here is an outline of the Flight Guidance System. An aircraft can move about three axes: lateral

(roll), vertical (pitch) and side-to-side (yaw). The mode logic of the FGS is divided into a number

of mode machines; there is one for the lateral direction, and another for the vertical direction.

(The yaw control has been omitted from the CoRE FGS example for simplicity.) Two other mode

machines control the acquisition of a preselected altitude, and the vertical approach to a landing.

For each state, the FGS invokes flight control laws that generate commands for the aircraft itself. For

instance, if the lateral mode is in a certain mode called HDG, then the FGS uses the corresponding

flight control laws to generate commands that will put the plane on a preselected heading.

These commands are either taken as advisories to the pilots (which are annunciated by the Flight

Director) or, if the Autopilot is activated, they are passed directly to the autopilot to control the

plane's motion.

For the most part, the modes are selected by the pilots, using switches on the flight control panel

or a number of other controls. There are also some environmental events that can change a mode,

such as when the plane exceeds a certain speed.

3.2 The Mode Machines

The first four mode machines that we mention are the mode_Active_Lateral, mode_Active_-

Vertical, mode_Altitude_Select and mode_Vertical_Approach mode machines. Together, these

four determine the selection of the flight control laws. The other mode machines of the FGS control

the flow and annunciation of data.

Each of the mode machines is hierarchical, in the sense that some mode values have submodes.

Because CoRE allows one to specify what values to export, some mode values may also be considered

submodes of a "supermode" mode value, which can be used in transitions.

The mode_Active_Lateral mode machine selects the flight control laws controlling the aircraft

in the horizontal plane, through the generation of roll commands. It can be in one of the following

modes: ROLL, HDG, NAV, APPR, or GA. Each of NAV and APPR has two submodes, Armed and

Track. As well, ROLL has two submodes, Hdg_Hold and Roll_Hold.

The mode_Active_Vertical mode machine selects the flight control laws controlling the aircraft

in the vertical plane, through the generation of pitch commands. It can be in one of the following



modes: PITCH, FLC, VS, ALTSEL, ALTHOLD, APPR, GA.

The mode_Altitude_Select mode machine describes the logic used to capture and track a

preselected altitude. It can be in one of the following modes: CLEARED, ARMED, or ACTIVE. There is

an ENABLED %upermode" that comprises ARMEDand ACTIVE. The ACTIVE mode has two submodes:

Capture and Track.

The mode_Vertical_Approach mode machine describes the logic use to capture and track a

precision vertical approach. It can be in one of the following modes: CLEARED, ARMED, and TRACK.

There is an ENABLED %upermode" that comprises Armed and Track.

The mode machines are not independent; in fact, certain transitions of one mode machine are

initiated by a mode transition of a different mode machine. Only certain combinations of modes are

possible; for instance, mode_Altitude_Select must be CLEARED whenever mode_Active_Vertical

is in one of the modes APPR, GA, or ALTHOLD.

The mode machine mode_Autopilot controls whether the autopilot is automatically applying the

flight control laws to the aircraft. It can be in one of the following modes: ENGAGED, DISENGAGED,

or DISENGAGED_WARNING.

The mode machine mode_Flight_irector controls annunciation of FGS-generated flight com-

mands. It can be in one of the following modes: ON or OFF. The ON mode has two submodes: CUES

and NO_CUES.

The mode machine mode_Overspeed records whether the aircraft is going too quickly. It can be

in one of the following modes: SPEED_0K or T00_FAST.

The FGS interacts with several systems, such as the Flight Control Panel, Control Yokes, Throt-

tles, Air Data Computer, navigation sources, and several displays. The Flight Control Panel, Control

Yokes, and Throttles comprise knobs and switches to select system modes and to set references such

as desired heading and airspeed. The Air Data Computer provides data about the measured state

of the aircraft, such as airspeed and altitude.



Chapter 4

Questions Arising from the FGS

Specification

4.1 Introduction

The CoRE specification of the Flight Guidance System has several mode machines, which are allowed

to influence each other's behavior. In particular, a change in the value of a variable such as the

mode mode_Active_Vertical is considered an event, and can be used to trigger other transitions.

As we described above, we chose a formal semantic model for the CoRE specification based on

the SCR discrete-time formal model. Using this model, we find several difficulties in the CoRE

specification as written. For each one, we have to discuss whether the error arises because our model

does not quite capture the intent of the authors of the CoRE specification, or because of an actual

error in the CoRE specification.

The major issues that we found are discussed below. We have given ideas for possible resolutions

where feasible. Our goal in this project is to translate these concepts using SCR discrete-time

semantics, of which the main ideas are as follows. An implementation of an event-driven system is

very likely to be implemented as a discrete-time entity, where the state of the system is known only

at regularly spaced intervals. At each interval, we poll the values of each variable; thus the interval

can be referred to as a polling cycle. The state of the system at the beginning of the cycle is the

old state, and the state at the end is the new state. We will use typewriter variables for variables

in the CoRE specification, and italic variables for variables in our discrete-time translation. By

convention, for any variable Vat of the old state, we denote by Vat" the corresponding variable for

the new state.

Once we have chosen these interpretations of event and transition, then "two events are simul-

taneous" means that the two variables change in the same polling cycle.

4.2 Simultaneous Events

A Flight Guidance System is an example of an event-driven system; that is, the system reacts to

events by changing its state. A fundamental question for any such system is how to deal with

simultaneous events.

First, an input event is a change in a monitored variable. These are the only events that are

allowed to instigate a change in the state of the system. There will always be physical constraints



in an actual implementation as to how quickly a system can process input events. So, there will

always be some question of what to do when the system cannot tell whether one input event is prior

to another. Thus either we must make the assumption that all external events can be separated in

time, or we must specify how the system behaves when confronted with simultaneous events.

One option is to assume that the system acts nondeterministically and randomly picks the order

in which to process the input events. This is, of course, not desirable if we want predictability in

our system.

Another option is to attempt to formulate responses for all combinations of input events. This

rapidly becomes messy and impractical, especially because the number of responses that we have to

specify will grow exponentially with the number of input events happening simultaneously. Another

option is to formulate a priority hierarchy for the input events. This may be feasible, but it can

be argued that we can separate the specification of this aspect of the system from the rest of the

specification.

Investigators of SCR, a close CoRE relative, have studied the so-called One Input Assumption,

where one assumes that only one input event can happen at a given time. We have chosen to

use this assumption. We can assume, if necessary, that we will give a separate specification of

a _preprocessor" which would take simultaneous events and, by some method such as one of the

options above, construct a sequence of non-simultaneous events to feed to the system. Even with

the One Input Assumption, we still face questions concerning simultaneous internal events, because

changes of internal variables are also events and can be used to drive mode machines.

Each event in CoRE can be represented as a change in a Boolean variable Bool from FALSE to

TRUE, or from TRUE to FALSE. The corresponding events are called @T(Bool) and @F(Bool). The

Boolean Bool could very well be a Boolean expressing whether one of the mode machines is in a

certain mode.

Suppose the event ©T(Booll) causes Boo12 to change from FALSE to TRUE, therefore spawning

@T(Bool2). If these are to be considered events, then does @T(Booll) occur %efore" @T(Bool2)?

Perhaps there is a machine whose transitions are triggered by both @T(Booll) and @T(Bool2). To

which event does this machine respond?

For example, consider the following three transitions taken from the CoRE specification of the

FGS. The notation HDG means _any mode value except HDG".

From the mode_Active_Lateral transition table:

Number

27

28

Event

GA @F(mode_Active_Vertical = GA) ROLL

HDG @HDG_Swit ch_Pr essed HDG

From the mode_Active_Vertical transition table:

Number From Event pT°HITC
57 GA @F(mode_Active_Lateral = GA)

Suppose that mode_Active_Lateral = GA and mode_Active_Vertical = GA. Then suppose

the HDG switch is pushed; by Transition 28, mode_Active_Lateral mode switches from GA to HDG.

This creates the event @F(mode_Active_Lateral = GA), which by Transition 57 causes mode_-

Active_Vertical to change from GA to PITCH. But thiscreates the event @F(mode_Active_Vertical

= GA). If these three events (@HDG_Switch_Pressed_ @F(mode_Active_Lateral = GA)_ @F(mode_-

Active_Vertical = GA) are assumed to occur simultaneously, then then mode_Active_Lateral is

asked simultaneously to change from GA to ROLL, and from GA to HDG.
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In the semantics we have chosen for the Z specification, the behavior in the previous paragraph

is inconsistent. There are other methods (such as RSML) whose semantics support _micro-time"

between the external events, in which the internal events occur in sequence, so the above %ascade"

would be considered valid. The CoRE guidebook is silent on the issue of micro-time.

The authors of the FGS wrote that they had chosen an interpretation where internal events

happen in sequence. They state (p. 20) that _if more than one chain is possible, a chain is selected

non-deterministically"; apparently this means that if multiple conflicting transitions are initiated

then one is chosen at random. However, they do not formulate a precise semantics for their interpre-

tation; in particular, there are no rules for ordering the spawned internal events into a sequence. One

can easily provide examples where using different rules would give rise to different system behavior.

For instance, we could resolve events breadth-first, where the input event spawns several events, and

then each of these is resolved before any of the events that they spawn are considered; or we could

resolve in some depth-first manner, where each event and all its consequences are resolved before

the next event is considered.

Without formal definitions or semantics for internal events, it is very difficult to resolve any

ambiguities because different users of the specification can easily hold contradictory interpretations,

and may have difficulty Communicating with each other unless these interpretations are made ex-

plicit. A formal specification is therefore very useful in establishing a common and unambiguous

frame of reference for all users of the specification.

4.3 Possible Resolutions

Since we do not assume any notion of micro-time, the three events given above would happen

simultaneously, and thus Transitions 27 and 28 would be nondisjoint. A method to resolve this

difficulty is to restrict Transitions 28 and 57 so that they can never occur simultaneously.

It appears that the intent of Transition 28 is that mode_Active_Vertical and mode_Active_-

Lateral should always leave the mode GA together, and if an event occurs that _directly" forces

mode_Active_Vertical to leave GA but the event does not _directly" affect mode_Active_Lateral,

then mode_Active_Lateral should go to ROLL. Of course, the analogous statement holds for events

that _affect only mode_Active_Lateral directly".

We can make the notion of _an event directly affecting a mode" explicit as follows. We begin by

collecting a list of input events. Because of the One Input Assumption, only one input event can

occur in any given polling cycle. Given a list of the possible input events (which we construct for

our Z formal specification), then we define a subset Vertical_Events of the input events that we

consider to directly affect the mode_Active_Vertical mode machine; it will certainly include those

input events that appear in the mode_Active_Vertical mode transition table, as well as some of the

input events that cause internal events that appear in the mode_Active_Vertical mode transition

table.

Then we can translate the event that triggers Transition 57 to be _©F(mode_Active_Lateral=

GA) and the input event is in the set Lateral_Events but not in the set Vertical_Events".

For instance, we would put HDG_Switch_Pressed in the Lateral_Events subset, but not in

the Vertical_Events subset. Then the modified Transition 28, whose event trigger is _F(mode_-

Active_Vertical) = GA and the input event is in the set Vertical_Events but not in the set

Lateral_Events" would not be triggered.

Modifying the transitions in this manner effectively forces them to be mutually exclusive, since

the two sets of input events associated to the modified transitions are disjoint.

11



Since the two subsets are quite close to the same information carried in the transition tables in

the CoRE specification, this construction is not so artificial. However, if the transition tables are

heavily dependent on internal events, it may require some effort to decide which external events

directly affect a mode machine, and which should be excluded.

4.4 Continuous Transitions

Another controversial aspect of the FGS CoRE specification is the use of so-called "continuous"

actions and mode transitions. The authors state that this has a simple and intuitive meaning.

However, they do not give a formal definition of the notion in the CoRE specification.

For instance, the event table defining the variable terLReference_IAS is as follows, where (FD

= mode_Flight_Director, AV =mode_Active_Vertical).

AV

OFF N/A

ON FLC

ON FLC

term_Reference_IAS

Event

X X

X

ENTERED

CONTINUOUSLY WHEN

term_SYNC

mon_Indicated_Airspeed

@Speed_Knob_Changed

@Speed_Knob_Changed

limit(O, 512,

term_geference_IAS I +

l*(terLSpeed_

Knob_Rotation))

First, the variable terLReference_IAS can change only when mode_Flight_Director = ON.

Then terLReference_IAS is required to be "continuously" equal to the monitored mon_Indicat ed_-

Airspeed whenever mode_Active_Vertical= FLC and terLSYNC = TRUE). However, the other

part of the definition of term_geference_IAS says that the variable terLReference_IAS also

changes, according to a certain formula, when the Speed_Knob is changed. Since term_SYNC corre-

sponds to a button being held down, it is possible that the crew will try to change the Speed knob

while terLSYNC = TRUE. Without a formal definition of "continuously" we cannot say whether this

event table is nondisjoint. (The authors of the CoRE specification had already stated this in their

document.)

One would like to capture the continuous event as follows: whenever mode_Flight_Director =

ON, mode_Active_Vertical = FLC and terLSYNC = TRUE, we want to set terLgeference_IAS

equal to mon_Indicated_Airspeed. This is akin to a condition table. To capture the second

condition, we would say that in a polling cycle where the Speed Knob is changed, we give terL-

Reference_IAS the value given by the formula in the table. But this is a feature of an event table.

Since these two types of tables have rather different interpretations in a polling cycle model, we have

to find a way to reconcile them.

We have chosen to view terLSYNC = TRUE as overriding the @Speed_Knob_Changed event. How-

ever, since we want the effect to be "continuous," we use a different interpretation from that of the

"when" guard. The One Input Assumption guarantees that ©Speed_Knob_Changed will never occur

simultaneously with ©T(terLSYNC), so there will be no conflict. We will discuss more details of

our translation in a later section on translating event tables into Z.
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A formal interpretation of _continuous transition" also seems slippery. (Let us note that the

authors of the CoRE specification introduced this concept specifically to generate debate about the

various methods of defining it.)

Let us give an example from the mode_Active_Vertical transition table. Transition 52 of the

CoRE specification reads

Number From Event To

FLC52 FLC, APPR, ALTHOLD, ALTSEL CONTINUOUSLY

WHEN terLOverspeed

The term terL0verspeed is a Boolean which is TRUE exactly when the aircraft is exceeding the

maximum safe operating speed. This transition is intended to force the plane to stay in one of the

modes FLC, APPR, ALTHOLD, or ALTSEL; approximately, if any actions causes mode_Active_Vertical

to enter some mode other than FLC, APPR, ALTHOLD, or ALTSEL, then mode_Active_Vertical should

immediately be switched into FLC.

An informal interpretation of this _continuous transition," which the authors of the CoRE speci-

fication seem to support, is that if mode_Active_Vertical is switched out of the set of mode { FLC,

APPR, ALTHOLD, ALTSEL }, (say for example to GA) then mode_Active_Vertical mode is _as soon

as possible" switched to FLC. This interpretation raises several questions.

• The first question is: for how long is mode_Active_Vertical actually in the other mode before

switching into FLC?

Here is a sample scenario. Suppose mode_Active_Vertical is in ALTSEL, mode_Active_-

Lateral is in HDG, and terL0verspeed = true. Now suppose the GA switch is pressed.

If we model the transitions by polling cycles, then does mode_Active_Vertical actually change

to the other mode GAfor a cycle and then change again to FLC? Or does mode_Active_Vertical

switch out of ALTSEL directly into FLC?

• This raises another interesting question: what effect does this continuous transition have on

the other modes, such as mode_Active_Lateral? Suppose mode_Active_Vertical enters the

mode GA for one polling cycle when the GA switch is pressed. Now, according to Transitions

31 and 55,when the GA switch is pressed, mode_Active_Vertical and mode_Active_Lateral

both switch to GA. Then mode_Active_Vertical is switched _as soon as possible" to FLC.

When mode_Active_Vertical mode is switched out of GA, then, by Transition 27, mode_-

Active_Lateral mode switches to ROLL. (Note that this continuous transition would cer-

tainly not be included in our proposed Lateral_Events set, so a modified Transition 27 would

still apply here).

• Now suppose that mode_Active_Vertical mode is switched directly to FLC when the GAswitch

is pushed. Then does the mode_Active_Lateral mode switch directly to ROLL as a result, even

though neither mode_Active_Vertical or mode_Active_Lateral was actually in GA at all?

Or should mode_Active_Lateral simply stay in HDG mode?

The authors of the CoRE specification (personal communication) say that they consider

mode_Active_Vertical to enter and leave the GA mode very briefly. However, this does

not tell us which of the above discrete-time polling cycle models best captures their intention.

When asked whether mode_Active_Lateral should stay in HDG, or switch to ROLL, in the

above scenario, they replied that a case could be made for either. Since this is a question at

13



thecustomerrequirementslevel,wecannotanswerit here.However,it is clearlya question
that anactualspecification,inorderto beunambiguous,mustbeableto answer.

4.5 Possible Resolutions

One might be tempted to simply include some sort of IF-THEN-ELSE clause at the beginning of the

mode_Active_Vertical transition table, such as "ifterm_SYNC = TRUE then (some effects) else (nor-

mal behavior of mode_Active_Vertical)". Or, similarly, for every transition of mode_Active_Vertical

into a mode which is not one of APPR, ALTSEL, ALTHOLD, or FLC, we could split the transition into

two parts. When term_0verspeed = FALSE, then mode_Active_Vertical ends up in the desired

mode. When term_0verspeed = TRUE, then mode_Active_Vertical ends up in FLC. This is of

course a rather inelegant approach, since there could easily be a large number of such transitions,

and there ought to be a convenient way of expressing this behavior succinctly. The benefit of this

approach is that it fits very strictly into the polling cycle framework.

However, the mode_Active_Vertical mode machine cannot be considered in isolation. We would

also have to modify transitions in other tables, such as the effect of ©GA_Pressed on mode_Active_-

Lateral = HDG. Since one of the intended invariants of the specification is that mode_Active_Lateral

is in GA only when mode_Active_Vertical is in GA, we must then send mode_Active_Lateral to a

different mode from GA if we send mode_Active_Vertical to a different mode ffrom GA.

If we assume that the intention is that mode_Active_Vertical indeed enters the GA mode mo-

mentarily, then we are faced with another difficulty. Suppose that we implement the mode transition

so that, when term_0verspeed = TRUE and mode_Active_Vertical is switched out of ({ APPR,

ALTSEL, ALTHOLD, FLC}), then mode_gctive_Vertical is then switched back to FLC. Then the

switch to FLC really must be considered as happening "after" the original switch. This leads us back

to the lack of "micro-time" semantics.

We believe that a crucial advantage of CORE, as interpreted using the SCR discrete-time model,

is that when a transition is specified (with an old mode value, event, and new mode value), the

transition indeed gives the stated relation between the old state and the new state. In order to

introduce micro-time semantics, we would have to give up this advantage entirely. We do not see

any easy interpretation of a continuous transition in our formal semantic model, without a drastic

rearrangement of the transitions as described above.

Because we have interpreted transitions such as Transition 55 above to actually send mode_-

Active_Vertical to GA, we cannot guarantee the CoRE FGS Invariant 11, which requires that

(term_Overspeed = TRUE _ mode_Active_Vertical E {ALTSEL, ALTHOLD, APPR, FLC_Overspeed}).

Interestingly enough, the authors of the CoRE FGS specification suggest (personal communication)

that their intent is that mode_Active_Vertical goes to GA momentarily during the continuous tran-

sition. Thus their specification cannot guarantee this invariant either, unless they define a semantics

in which their invariant only holds "once all of the internal events have resolved" (which of course

would also require a formal definition).

Using micro-time opens up a new range of questions. Once you admit multiple steps in a single

transition, then you have to choose whether to allow only a fixed number, or you must must be

prepared to check for infinite cascades and loops. You must also define an order in which to evaluate

the internally generated events. Naydich and Nowakowski [6] have explored this option in detail for

the CoRE FGS specification. They translated the specification into PROMELA, and used the SPIN

model checker to understand the consequences of using a micro-time semantics for this specification.
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4.6 Miscellaneous Comments

Here we note a few other points in the CoRE specification that deserve comment.

4.6.1 mode_Autopilot Entering ENGAGED

The mode_Autopilot mode machine has a mode ENGAGED with two submodes Normal and Sync. The

ENGAGED submode transition table and the descriptive text suggest that the authors' intent is that

mode_hutopilot be in ENGAGED/Sync whenever term_SYNC = TRUE. However, mode_hutopilot =

ENGAGED is initialized to the Normal submode, and there is no statement that mode_Autopilot=

ENGAGED should initializeto the SYNC submode ifterm_SYNC = TRUE when mode_Autopilot enters

ENGAGED.

4.6.2 mon_Nav_S ource_S ignal_Type

There is no explicit invariant given between mon_Nav_Source_Signal_Type<VNR<N>> and mon_-

Nav_Source_Frequency<VNR<N>>. Without such an invariant, it is possible for the value of mon_-

Nav_Source_Signal_Type(mon_Selected_Nav_Source) to change fronL say, L0C to V0R without

causing the event @Nav_Source_Change; thiswould also cause the variable term_Selected_Nav_Type

to change. Thus Invariant 7, which asserts that mode_ctive_Lateral = APPR/Track _ term_-

Selected_Nav_Type C {LOC, FMS} could be violated. Apparently, the intent is that mon_Nav_-

Source_Signal_Type<VNR<N>> issupposed to be a function ofmon_av_Source_Frequency<VNR<N>>,

and cannot change independently. However, this is not stated explicitly in the CoRE specification.

4.6.3 Duration(INMODE) Booleans

Transitions 43 and 53, both in the mode_Active_Vertical transition table, may not be disjoint.

Transition 43 occurs exactly when Transition 64 occurs, and Transition 53 occurs exactly when

Transition 69 occurs. Here are the transitions in question.

mode_Altitude_Select ENABLED Submode Transition Table

Id From Event To

64 ARMED @T(term_ALTSEL_Cond = Capture AND ACTIVE

Duration(INMODE) > const_min_armed_period)

mode_Vertical_Approach ENGAGED Transition Table

Id From Event To

69 ARMED @T(term_Vertical_Approach_Cond_Met AND TRACK

Duration(INMODE) > const_min_armed_period)

The transition of mode_Altitude_Select into ACTIVE triggers Transition 43, and the transition

of mode_Vertical_/tpproach to TRACK triggers Transition 53.

Now, it is not clear whether a Duration(INMODE) Boolean (which is not really an input event)

can become TRUE at the same time that, say, term_Vertical_Approach_Track_Cond_Met becomes

TRUE. If these two can become TRUE simultaneously, then the two transitions above could happen

simultaneously.
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Furthermore, if it is possible that mode_Altitude_Select enters ARMED at the same time that

mode_Vertical_Approach enters ARMED, then both of their Duration(INMODE) Booleans could be-

come TRUE simultaneously. Then if both terLALTSEL_Cond = Capture and terkVertical_-

Approach_tonal_Met = TRUE before the Duration(INMODE) Booleans become TRUE, then the two

transitions could go off.

These two scenarios could be prevented by ensuring that terLALTSEL_Cond = Capture and

terkVertical_tpproach_Cond_Met = TRUE are mutually exclusive. While this is probably the

authors _ intent, it is not stated in the specification.
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Chapter 5

Preliminaries on the Z Notation

5.1 Introduction

Z (pronounced zed) is a formal specification language [4, 10, 11]. Thus it has a strictly defined

syntax and semantics, and it is very useful in describing what a piece of software is supposed to do.

However, it is by its nature not an executable language, as it describes only the objective of the

program, not how to accomplish it.

The Z language is well-suited to handling an event-driven system with finitely many states. Z

deals in variables and predicates, which are expressions of the variables that are either true or

false. All variables in Z are typed. Examples of types are the natural numbers, or a free type with

enumerated elements (such as {HDG, GA, ... }). The free type construction in Z allows us to, for

instance, enumerate the possible modes of a mode machine.

5.2 Schemas

Z is essentially first-order predicate calculus plus schemas. A schema models the state of a system; so

we can use schemas to model change, which is essential for specifying state machines. For instance,

i A_Schema

Var : I_

1 <_ Var < 50

declares a variable Var with values in the naturals, and constrains Var to have values between 1 and

50.

We can build more complicated schemas by including this one in the declaration part of another,

such as below:

_ Another'_Schema

A_Schema

Var2 :

Var3 : N

Var2 = Var + 5

Var3 > 0
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ThisschemadeclarestwonewvariablesVar2 and Var3, and then asserts an invariant relating

Var2 and Var, and another involving Var3. A Z convention is that predicates stated on separate

lines are conjoined.

We illustrate these concepts with a sample mode machine. The actual Z specification in the

appendix is constructed along these lines.

We can define a free type for the modes of mode_Active_Lateral as follows.

LATERAL_MODE ::= L_GA [ L_APPR [ HDG ] NAV ] ROLL

We can define the mode_Active_Lateral mode machine as a variable whose values are in the

LATERAL_MODE free type.

_ Def _ Of _mode_A ctive_Lateral

mode_Active_Lateral: LATERAL_MODE

Once we have defined several mode machines, we can combine them together into one large

schema.

_ Mode_Machines

Def _ Of _mode_A ctive_Lateral

Def _Of _mode_Active_ Vertical

Def _ Of _mode_A ltitude_Select

Def _Of_mode_ Vertical_Approach

We can declare our other variables in the same way.

_ Some_ Variables

Varl : I_

Vat2 : VAR2

_ More_ Variables

Vat3 : I_

Vat4 : VAR4

Then we can assemble everything into a large State schema.

_ State

Mode_Machines
Some_Variables

More_Variables

Once we have defined a schema, we can use a powerful convention of Z that allows us to declare

another type of variable, namely a schema binding. Any schema can be viewed as the set of all

values of the variables of the schema that also satisfy the predicate of the schema. Thus the schema

State can be viewed as the set of all possible states of the system. An arbitrary element of this set,

called a schema binding, can be referred to by the shorthand OState (reminiscent of "the" State).
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5.3 Transitions

The Z notation provides a convention for transitions, using operation schemas. Given a schema

named State, for instance, we can define another copy 5'tate _ of the schema, all of whose variables

have the same names as the variables of State, except that they are primed. The convention is that

the unprimed State represents the "before" state, and the primed State _ represents the "after". Then

the schema A State, by convention, contains both State and State _, and is considered the "change

in State".

Thus, to specify a transition in Z, it suffices to write down a schema that includes A State and

asserts a relation between the values of State and the values of State _. The Z convention is that a

transition is simply a constraint between the old and new states, such as

A_Transition

_ A Slale

Mode = A A Event1 A Mode _= B

Note that the Z operation schema does not mention implication; the predicate is not Mode = A

A Event1 _ Mode _ = B. This is because it is not meant to always hold as a predicate on AState.

Rather, it is meant to be one of several transitions, and the disjunction of these transitions is to be

the total operation. See Section 6.8.3 for an example.

5.4 Axiomatic Definitions

Another important feature of Z is the use of axiomatic definitions. These are used to globally define

constants, functions, or subsets. In contrast to a schema, where each binding of a schema produces

a separate copy of the variables inside it, an axiomatic definition produces one globally accessible

definition of a variable.

For instance, the constant const_min_armed period would be declared in an axiomatic definition

as follows:

const_min_armed_period : N

const_min_armed_period = 500

5.5 Booleans in Z

One aspect of Z which may seem disconcerting at first is the lack of a built-in Boolean data type. In

Z, all relations (and thus functions) are defined as sets; a function is simply a special kind of binary

relation, and is thus a set of ordered pairs. Thus, for example, the unary relation odd(x) is in fact

a subset of Z consisting of all the odd integers. It is not natural in Z to define a function odd(x)

that takes an integer x to a value "TRUE" if x is odd and "FALSE" otherwise. In fact, TRUE and

FALSE are predicates in Z; and in Z, predicates are not merely "expressions with Boolean values",

as they are in many other languages.

This lack of Boolean types is in concordance with Z's philosophy of specifications. Since TRUE

and FALSE has no built-in advantage over, say, VALID and INVALID, we are encouraged to use

appropriate names for the values of the variables.
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In ourtreatmentoftheFGS,wehavedefinedaBooleantypeTRU and FALS and used it rather

often, in order to facilitate comparison with the CoRE specification. The reason for changing the

spelling is that Z/EVES 1.4 may mistakenly print out the predicate (lr'ue) instead of TRUE.
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Chapter 6

Formal Specification of the FGS

6.1 Translating the Specification into Z

We have chosen to organize the Z specification in a similar manner to the CoRE specification. The

definitions are roughly in the same order as they appear in the CoRE specification. Z requires all

variables to be declared before they can be otherwise used, so we occasionally had to reorganize

some of the variable declarations. The variables tend to have the same names unless they did not

appear in the CoRE specification at all. Some mode names, such as GA and tPPtt, were overloaded

in the CoRE specification; they stood for two mode values, one for mode_Active_Lateral and one

for mode_Active_Vertical. Since Z requires that different free types (such as the possible modes

of mode_Active_Lateral and mode_Active_Vertical) be disjoint, we changed some names slightly. For

instance, we use L_APPR and V_APPR instead of just APPI_.

Many of the difficulties that we encountered in translating the CoRE specification into Z arise

because the CoRE model is purely event-driven: an event occurs and its effect is felt instantaneously.

Therefore, when we translate the FGS into a polling cycle model, we must decide on interpretations

of certain aspects of the FGS accordingly.

We have chosen to interpret the CoRE FGS specification using, as much as possible, the discrete-

time formal model for SCR semantics [2]. In particular, we use its definitions of events and simul-

taneity of events. The SCR model is quite compatible with Z, since events and transitions are defined

in terms of comparisons between two system states (unprimed and primed), just as in Z. However,

in order to analyze the CoRE specification, we must ignore some constraints of the SCR model (in

particular, the requirement that the variables be partially ordered by dependency). In doing so,

we give up some of the benefits, such as the sufficiency of static consistency checks in determining

exhaustiveness and determinism of the system.

For instance, consider the example discussed in Section 4.2. The most straightforward translation

of Transitions 28 and 57 into a discrete-time model is as follows. Transition 28 would translate to

_ Transition_TwentyEight

Transition

mode_Active_Vertical = V_GA

mode_Active_Vertical _¢ V_GA

mode_Active_Lateral = L_GA

mode-Active-Lateral _ E ROLL
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andTransition57wouldtranslateinto

_ Transition_FiftySeven

Transition

mode_Active_Lateral = L_GA

mode_Active_Lateral _ 7_ L_GA

mode_Active_Vertical = V_GA

mode_Active_ Vertical _= PITCH

Clearly these two transitions will conflict with any transition that takes these two modes from

L_GA and V_GA to any modes other than PITCH and ROLL.

Furthermore, these two transitions, by themselves, are nondeterministic. If mode_Active_Lateral

= L_GA A mode_Active_Vertical = V_GA , then the above two predicates are satisfied if mode_-

Active_Lateral _ = L_GA A mode_Active_Vertical _ = V_GA , but they are equally satisfied if mode_-

Active-Lateral _ C ROLL A mode_Active_Vertical _ = PITCH. Thus we cannot exclude the possibility

of "spontaneous transition" if both transitions are allowed to hold simultaneously.

If Transitions 28 and 57 were the only transitions in their respective tables, then the tables would

individually be nondisjoint, but the system as a whole would still be nondeterministic.

6.2 Initializing the Variables

The CoRE specification requires that each variable be initialized to a certain value. However, many

initial values are computed from the other variables' initial values using condition or event tables.

In Z, initialization is described as follows. Suppose our schema that declares the variables is called

State. Then we define another schema, conventionally called InitState, whose predicates contain the

initialization of the variables.

For example, suppose we have a schema

S'tale

Varl : 1.. 50

Vat2 1 .600

Then a possible initialization would be

_ InilSlale

Slate

Varl = 25

Var2 = 1

The InitState schema is merely a constraint on the possible initializations. If not all variables are

given a value in InitState, then there could be several possible initializations that satisfy InitState.

Of course, it is imperative that the initialization actually be a legal state. The legality check for

the initial state takes the form of a theorem asserting that there in fact exists a state (i.e. a binding

of Slate) that satisfies the predicates of the schema InitState; that is, the values assigned in InitState

are not inconsistent with the predicates given in State. The spot is the Z "such that" notation.
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TheoremInit_Is_OK:
3State• InitState

The CoRE specification is not very explicit about when the FGS is to be initialized. Is it to

be activated when the plane is still on the ground? Is it possible that the FGS will turn on when

the plane is in the air and is already overspeed? Should this cause the mode_0verspeed machine to

initialized to T00_FAST?

6.3 Numerical Quantities in Z

Z does not possess a built-in type for real numbers. Its only built-in type is the integers, along with

some subsets such as the naturals. The CoRE specification is not very explicit about some of the pre-

cisions to which numerical values should be stored (such as con_Selected_Heading_Annunciation,

which is in degrees, but the number of significant figures is not declared).

In Z, we can declare a type, say ALTITUDE, as a copy of the the naturals, and then we can

declare variables whose values are of type ALTITUDE. However, Z/EVES does not perform this

kind of typechecking; if both ALTITUDE and AIRSPEED, say, are copies of the naturals, Z/EVES

will not distinguish between them.

In order to translate the numerical types of the CoRE specification into Z, we have chosen a

precision that is consistent with the CoRE declarations. For instance, if a CoRE variable declaration

is given as -5.0 to 5.0 degrees, then our corresponding Z declaration would be -50 ...50. In the

CoRE specification, several variables of type hltitude_gate were measured to different precisions.

We chose to declare the Z type ALTITUDE_RATE with the largest increments (0.001 kft/min) that

all allowed all of these variables to be measured to the desired precision with an integral number of

increments.

6.4 Transitions

We are operating under the assumption that only one monitored variable changes during each polling

cycle. Therefore, we want to tag each cycle with the input event that occurs in that cycle. First we

must define a free type EVENT containing all of the event labels that we will use.

EVENT ::= At_Switch_Pressed ] Event2 ] No_Event ...

Then we declare a variable taking values in EVENT.

The_Event

_ event : EVENT

Since each event constitutes a change in a monitored variable, we define an event using a schema

of the following form. Suppose we have a switch Switch taking the values ON and OFF, declared as

follows.

SWITCH ::= ON [ OFF

A_Switch

Switch : SWITCH
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ThenwecandefinetheeventAt_Switch_Pressed corresponding to the Switch going from OFF

to ON as follows

_ Event_Switch_Pressed

AA_Switch

The_Event

(event = At_Switch_Pressed) ¢:> (Switch = OFF A Switch' = ON)

For convenience, we have overloaded some of the event labels. For instance, sometimes there are

two switches with the same function; in this case, pushing either will generate the same event. There

are also some other places where the overloading is a bit greater, such as ALTSEL_Traclc_Cond_Met.

In this case, the variable term ALTSEL_TracLCond is a compound Boolean, and it would be rather

inconvenient to list the changes of all of the monitored variables as separate input events.

Some CoRE events are defined essentially as disjunctions of other events; for instance, ©Lat eral_-

Mode_Requested occurs exactly when one of @HDG_Swit ch_Pressed, @NAV_Swit ch_Pressed, APPR_-

Switch_Pressed, or GA_Pressed occurs, to simulate this in Z, we define a subset Lateral_Mode_Requested

consisting of the appropriate input events. Then we translate the event ©Lateral_Mode_Requested

into the statement event C Lateral_Mode_Requested.

We must be conservative about overloading, because it is easy to get confused about what should

be considered an input event and what is properly an internal event. The labeling is designed

specifically to guarantee the One Input Assumption; so we must be sure that an external event can

influence only one event label.

6.5 Sustaining Conditions

CoRE allows parts of the specification, such as variables, to be "tagged" with sustaining conditions.

A sustaining condition is a predicate, and the tagged part is not to be accessed or changed in any

way unless the predicate is true. So, for instance, a variable with a sustaining condition is not

supposed to be accessed or changed unless the sustaining condition is true.

However, the CoRE Guidebook [1] is not very specific on what variables can or cannot be tagged,

and it does not give much idea of the best way to translate such a condition into our polling-cycle

model. For instance, is it permissible to access or to change a tagged variable in the same polling

cycle that the sustaining condition changes?

As well, the CoRE FGS specification tags other quantities such as mode machines. Since a mode

machine records state history, the mode of a mode machine cannot only be calculated from the values

of variables in the present state. The CoRE FGS specification even tags invariants with sustaining

conditions; since some variables involved have sustaining conditions, the authors must restrict the

validity of the invariant to the states where such variables can be accessed.

A further indication of the authors' intent is given by the use of the sustaining condition

mode_Flight_Oirector = ON forthe mode machines mode_Active_Lateral, mode_Active_Vertical,

mode_Altitude_Select, mode_Vertical_Approach. For instance,suppose mode_Flight_Oirector

= OFF, so that these four mode machines are inaccessible. Now suppose that a flight mode is re-

quested: say @HDG_Switch__Pressed occurs. First, note that the this event causes mode_Flight_-

Director' = ON. It is clear that the mode_Active Lateral table is in effect for that polling cycle,

so that mode_Active Lateral' = HDG.
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So a sustaining condition is not quite like a guard in a conditioned ("when") event. A variable in

a given state can be accessed as long as the sustaining condition is true in that same state. For term

variables, our interpretation is that the tagged variable can be changed only when the sustaining

condition is TRUE in the new state.

However, in the case of the mode machines, it seems important that we use the mode machine's

value to keep track of the sustaining conditions. To each mode machine, we add an NOT_IN MODE

mode value, and add transitions to ensure that the mode machine is in NOT_IN MODE exactly

when it sustaining condition is not true. So it seems that a reasonable interpretation is to state

an invariant of the system, that each mode machine is in its corresponding NOT_IN MODE mode

whenever its sustaining condition is not true. Furthermore, in the transition tables, we add two

transitions detailing what happens when the sustaining condition becomes true, and when the sus-

taining condition becomes false. In the case when an invariant has a sustaining condition, we have

rewritten the invariant to say that the sustaining condition implies the invariant.

6.6 Hierarchical Mode Machines

The authors of the CoRE FGS specification extended the CoRE method by allowing the use of

hierarchical mode machines, where a given mode of a mode machine may have its own submodes,

which can be governed by a separate transition table.

For instance, the Node_Altitude_Select mode machine has two "top-level" modes, CLEARED

and ENABLED. The ENABLED submode has two submodes, ARMED and ACTIVE. The ACTIVE submode

has two submodes, Capture and Track.

One way to model the mode_Altitude_Select machine in Z would be to construct separate,

current mode machines for each submode. However, this requires two more mode machines (say

ALTSEL_ENABLED_Mode and ALTSEL_ACTIVE_Mode). Since all Z variables have to have a value at all

times, we would be wise to construct extra NOT_IN_NODE values for these machines, for the times

when the the top-level mode machine is not in the respective mode.

A less complicated alternative is to flatten the hierarchical mode machine, and then to intro-

duce subsets corresponding to the top-level modes. For instance, we could define the free type for

mode_Altitude_Select as follows:

ALTSEL_MODE ::= ALTSEL_CLEARED [ ALTSEL_ARMED [ ALTSEL_CAPTURE

[ ALTSEL_TRACK

Then we give an axiomatic definition

ALTSEL_ENABLED, ALTSEL_A CTIVE : P ALTSEL_MODE

ALTSEL_ENABLED = {ALTSEL_ARMED, ALTSEL_CAPTURE, ALTSEL_TRACK}

ALTSEL_ACTIVE = {ALTSEL_CAPTURE, ALTSEL_TRACK}

Then any CoRE reference to mode_Altitude_Select = ACTIVE would be replaced in Z with mode_-

Altitude_Select E ALTSEL_ACTIVE.

Most CoRE mode machines are given with an initial value. For instance, the CoRE ACTIVE

submode machine has the initial value Capture. So we can translate a CoRE transition that

sends mode_Aititude_Seiect to ACTIVE into a Z transition that sends modc_Altitudc_Sdcct to

ALTSEL_CAPTURE.
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However,somesubmodemachinesaregivenwith transitiontablesthat discussentryinto the
mode.In thiscase,thetransitionsthat giveentryintothemodeshouldbebrokenup intodifferent
transitions,oneforeachpossiblesubmode.

Thisapproachseemscompatiblewith the intentof theauthorsof theCoREspecification.In
particular,this approachalsoallowsusto capturetheintentof theENABLEDsupermodesin the
mode_Altitude_Selectandmode_Vertical_hpproachmodemachines.In theCoREspecification,
oneis allowedto writeatransitionthat sendsmode_Altitude_Selectto ENABLED;but ratherthe
submodevaluesARMEDorACTIVEareactuallythevaluesexportedto othermodemachines.In Zwe
translatea transitionintoENABLEDasa predicateassertingthat mode_Allilude_Selecl' lies in the

subset ENABLED.

6.7 INMODE Booleans

Several places in the CoRE specification use a Boolean such as @T(Duration(INMODE) > :tO sec),

as in the following table.

mode_hutopilot DISENGAGED Transition Table

lldl From Event To
Warning @T(Duration(INMODE(Warning)) > 10 sec) Normal

In our Z translation, we construct a Boolean for each mode and duration that is used in the

specification. For the above, we declare

INMODE_Boolean

Duralion_INMODE_AP_Disengaged_ Warning_gl_len_sec : BOOLEAN

which is to be TRU when mode_Aulopilol has been in the mode AP_DIS'ENGAGED_WARNING

for more than 10 seconds. (We do not, however, specify a clock or a mechanism for changing the

value of this Boolean; that can be done at a later stage in the design process.)

We make one constraint, which is that if this Boolean (which we abbreviate to Dur'alion_INMODE

for now) is TRU, then the corresponding mode machine was in the appropriate state during the

previous polling cycle.

i Transilion_INMODE_Requiremenl

AINMODE_Boolean

ASlale

Duralion_INMODE_AP_Disengaged_ Warning_gl_len_sec' = TR U

( mode_A ulopilol = DISENGAGED_WARNING)

This constraint might seem odd, since it would seem reasonable to require if the Duralion_INMODE

Boolean is TRU in a given state, then the corresponding mode machine is that mode. However, to

capture the intent of Transition 11 above, where Dur'alion_INMODE = FALS' A Dur'alion_INMODE'

= TRU is used as a trigger for setting mode_AulopiloV = AP_DIS'ENGAGED_NORMAL, it seems

most reasonable to make our constraint as above.

We have not been more specific with the details of these Booleans, such as specifying a clock.

This is concordant with the use of Z; we can add a more specific constraint at a later point in the

specification lifecycle.
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6.8 Translating Tables

A CoRE table associated to a variable assigns a value to that variable. A condition table for a

variable decides, based on the values of certain other variables, which of several values to assign the

variable. An event table or mode transition table decides, based on the changes in certain other

variables that occur in a given transition, which of several values to assign to the variable in the

new state.

6.8.1 Condition Tables

The translation of a CoRE condition table to our Z polling cycle model is straightforward.

Suppose our condition table is

Sample Condition Table

ModeM°de==BA Varlx = T Varlx = F TXERu

CondVar Vail Val2 IVal3 1
I l

Given the schema State, we write out the conditions of the table, first by rows, and then within

each row, by columns. We suppose that the variables that are involved in the condition table are

declared within the schema Variables.

Condition_Table

I Variables

(Mode = A A Varl = T A CondVar =Vall) V

(Mode = A A Varl = F A CondVar = Val2) V

(Mode = B A CondVar = Val3)

Since the condition table for a variable defines that variable in terms of other variables in the

same state, we shall include condition tables as part of the State schema. Then in each state, the

condition table will hold and will thus compute the value of its variable.

6.8.2 Event Tables

An ordinary event table also has a straightforward translation. Suppose we have an event table of

the following form.

Sample Event Table

Model = A Eventl X

Model = B

EventVar

Event2

Event2

Eventl

Vail I Val2

Event3

Val3

We can translate the table into Z as follows. We suppose that the variables involved in the event

table are declared in Variables, and the input event variable is declared in The_Event.
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_Event_Table
A Variables

The_Event

(Model = A

(Model = A

(Mode 1 =

(Mode 1 =

(Mode 1 =

(7 ((Mode
(Mode i =

(Mode i =

A Evenll A EvenlVar _ =Vall) V

A Event2 A EvenlVar _ = Val2) V

B A Event2 A EvenlVar I = Vall) V

B A Evenll A EvenlVar _ = Val2) V

B A Event3 A EvenlVar _ = Val3) V

1 = A A Evenll) V (Model = A A Event2'

A Eve, t2) v (Model = A Eve, tl) V
B A Event3)) A EvenlVar _ = EvenlVar)

V

The negation of the disjunction of all the event triggers 1s used as the trigger for no change in

the value of Event Var. This construction is necessary in order to define the value of Event Var for

all possible changes of State.

One type of event used in the CoRE specification that deserves special mention is the ENTERED

(otherwise known as ©T(Tnmode)) event. This event occurs when the mode machine enters the

mode corresponding to the row in which the ENTERED appears. Of course, this means that the mode

machine was not in that mode in the initial state, but was in that mode in the final state. The SCR

method arranges the event table so that each row corresponds to a possible old mode of the system,

and events listed in that row may happen while the old mode is equal to that row's mode value.

The translation of the hypothesis for an ENTERED event is still straightforward, but the old state will

not be in the mode where the ENTERED event is listed, so we should not compare this event to the

other events in that row.

In order to partition the events properly, we must rewrite the ENTERED events. If an ENTERED

event appears in the i-th row corresponding to the mode value M_i, then we rewrite the event as

@T(Mode = M_i) and transfer this event to all of the other rows (since those correspond to the

possible old values of Mode before ©T(Mode = M_i). For instance, suppose we have a table as below.

Sample Event Table with ©T(INMODE)

Model = A ©T(INMODE) Event2 X

Model = B X Eventl Event3

Model = C X Eventl Event2

EventVar Vall Val2 Val3

The ©T(INMODE) really means ©T(Model = A). So we should remove this event from the row

Model = A and put it in the other rows where it could occur, namely the rows for Model = B and

Model = C.

The rewritten table would be

Rewritten Event Table with ©T(INMODE)

Model = A X Event2 X

Model = B @T(Model = A) Eventl Event3

Model = C @T(Model = A) Eventl Event2

EventVar Vall Val2 Val3
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We also must discuss the translation of the CONTINUOUSLY events. For instance, let us look at

one row of a table containing such an event.

Continuous Event Table for EventVar

EventvarM°de= A CONTINUOUSLY ValIWHENBool = TRUE Event2val2 I

Since this is an event table, we have decided that the polling cycle translation should only

specify the value of Event Vat' in the new state, rather than stating an invariant about the unprimed

EventVar as well. We believe that the authors' intent is that EventVar should equal Vat1 in any

state where Bool = TRU and Mode = A. So we make this assertion for the new (primed) state, and

then translate the other entries of the table in order not to conflict with this assertion.

Continous_Event_Table

I AState
(Mode' = A A BooF = TRU A EventVar' = Vall) V

(Mode = A A BooF = FALS A Event2 A EventVar' = Val2)

Now let us demonstrate on a table that contains both ENTERED and CONTINUOUS events. We

abbreviate mode_Flight_Director to FD and mode_active_Vertical to AV. Here, because two

mode machines are involved, the ENTERED could mean either AV entering FLC while FD is ON, or

also FD entering ON at the same time as AV enters FLC. We believe that the authors' intent is that

the both of these events will trigger the transition in question.

AV

OFF N/A

ON FLC

ON FLC

terLReference_IAS

Event

X X

X

ENTERED

CONTINUOUSLY WHEN term_SYNC

mon_Indicated_Airspeed

@Speed_Knob_Changed

@Speed_Knob_Changed

limit(0, 512,

terLgeference_IAS' +

l*(terLSpeed_

Knob_Rotation))

Some of this translation, such as using C instead of = in some places, comes from other aspects

of the translation into Z.
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_ Def_Of_term_Referenee_IAS

A aggr_Referenees

A aggr_FCP_Kn obs

A aggr_Air_Data

ASYNC

The_Event

A aggr_Flight_Modes

(mode-Flight-Director _ C FD_ON A mode_Active_Vertical _ FLC A

mode_Active_Verticaff C FLC A terrn_SYNC _ = FALS

A terrn_Reference_IAS _ = mon_Indicated_Airspeed _)

V (mode_Flight_Director _ C FD_ON

A mode_Active_Verticaff E FLC A terrn_SYNC _ = TRU

A terrn_Reference_IAS _ = mon_Indicated_Airspeed _)

V (mode_Flight_Director C FD_ON A mode_Active_Vertical _ FLC

A event = Speed_I(nob_Changed

A mon_Indicated_Airspeed _= terrn_Reference_IAS _ =

rain{512, max{0, term_Reference_IAS + term_Speed_I(nob_Rotation'} } )

V (mode_Flight_Director C FD_ON A mode_Active_Vertical C FLC

A lerm_SYNC _ = FALS A event = 5'peed_Knob_Changed

A mon_Indicaled_Airspeed _= lerrn_Reference_IAS _ =

rain{512, max{0, term_Reference_IAS + term_Speed_I(nob_Rotation'} } )

V (7 ((mode_Flight_Director' C FD_ON A mode_Active_Vertical _ FLC A

mode-Active-Vertical _ C FLC A terrn_SYNC _ = FALS)

V (mode_Flight_Directo/C FD_ON

A mode_Active_Verticaff C FLC A term_SYNC _ = TRU)

V (mode_Flight_Director C FD_ON A mode_Active_Vertical _ FLC

A event = Speed_I(nob_Changed)

V (mode_Flight_Director C FD_ON A mode_Active_Vertical C FLC

A term_SYNC _ = FALS A event = 5'peed_I(nob_Changed))

A term_Reference_IAS _ = term_Reference_IAS)

6.8.3 Transition Tables

We can translate the the transition tables of the CoRE specification into Z transition schemas. For

instance, consider a table for a certain mode machine M with modes A, B, C, ... and transition table

with events Eventl and Event2, that looks like:

Sample Transition Table for Mode

From [

A

B

C

Event To

Eventl B

Event2 C

Eventl A

Recall the structure of an operation schema from Section 5.3. We translate the rows of the

transition table into schemas as follows. We presume that all of the variables in the table appear in

the Variables schema.
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Transilion_One

I A VariablesMode = A A Evenll A Mode' = B

Transition_ Two

_ A Variables

Mode = B A Event2 A Mode' = C

Transition_ Three

_ A Variables

Mode = C A Evenll A Mode' = A

We must also specify that that value of Mode does not change when none the above events occurs.

Transition_Four

I X Variables(_ ((Mode = A A Eve,_ll) V (Mode = B A Eve,_12) V (Mode = C A Eve,_ll))
A Mode' = Mode)

Finally, the translation of the transition table is the disjunction of the above four schemas. This

schema thus asserts that at least one of the above operations must hold.

Transition_Table _-

Transition_One V

Transition_Two V

Transition_Three V

Transition_Four

As we noted before, this translation has the property that if two rows are not disjoint, then the

table is nondeterministic; either outcome will satisfy the predicate of the table. This is in contrast

to an imperative translation of the table, with, a conjunction of predicates like Mode = A A Event1

Mode' = 8; such a conjunction would be inconsistent and thus equivalent to false if two rows

were in conflict.

6.9 Formal Verification of Properties of the FGS

We can use our Z specification to construct formal verifications of desirable properties of the spec-

ification. For instance, for each condition, event, or transition table, we can generate a theorem to

check disjointness of the entries; and for condition tables, we generate a theorem to check that the

table covers all possibilities.

In addition, we may have additional invarianls about the specification that we wish to prove.

For instance, the CoRE FGS specification requires that mode_ActJ.ve_gertJ.ca]. E {APPR, GA,

ALTI-IOLD} _:_ mode_A].tJ.tude_Se].ect = CLEARED. A usual method of showing that an invariant

holds for all states is to show that it holds for one state of the system (such as the initial state), and

then to show that every transition preserves the invariant.

We are using Z/EVES 1.4 [7, 8], a theorem prover for the Z language, to generate proofs of table

checks and system invariants.
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Z/EVEScanperformsyntaxandtypecheckingof aZspecification.

Z/EVEScanperformschemaexpansion,whichreplacesanincludedschemaby its text; this
isveryuseful,especiallyin a largespecification.

Z/EVEScandopreconditioncalculation,to determinethenecessaryconditionsfor anopera-
tionto beinvoked;nottakingintoaccountallofthepreconditionsofanoperationisafrequent
causeof actualprogramfailure.

Z/EVEScanperformdomainchecking,to ensurethatfunctionsareappliedonelementsthat
areactuallyontheirdomain.

Z/EVESprovidesaninterfaceto the EVEStheoremprover,whichprovidespowerfulauto-
matedsupport(e.g.heuristicsandconditionalrewriting)aswellasusercommandsto direct
thetheoremprover.

6.10 General Principles

The EVES theorem prover is designed to manipulate predicates into equivalent but hopefully simpler

ones. In particular, the prover tries to manipulate true predicates (i.e., theorems) to true. In order

to study a specification, we must determine which predicates to give to the theorem prover to

manipulate.

For instance, if we have a rather complicated schema such as a transition table, we can ask the

theorem prover to manipulate the predicate of the schema, in the hopes of getting a simpler form

which we can more easily understand. This can be very useful when we are trying to figure out

exactly what the system is doing, and when the predicate is written in a redundant form, such as a

standard translation from a CoRE table.

We can also use the theorem prover to attempt to prove theorems such as table consistency

checks. The prover may not be able to manipulate the predicate to true. However, if the check

is indeed false, the prover may be able to strip away most of the predicate and reveal plainly the

aspect of the predicate that may not be true. Then, we can inspect the simplified predicate for

counterexamples; such counterexamples will also falsify the original putative theorem.

6.11 Using Z/EVES on the FGS Formal Specification

Recall that the CoRE FGS contains elements such as concurrent mode machines that depend on

each other, which are prohibited in the SCR formal model. Thus many of the pleasant properties

of the SCR formal model are lost. The SCR formal model requires an ordering of the variables by

dependency. Thus, in this model we can perform consistency checks on tables that depend only on

monitored or otherwise checked variables, so there is no chance of being forced to use an unchecked

table in a consistency check of another table. This is how the SCR formal model uses consistency

checks to guarantee exhaustiveness and determinism.

Consistency of the transition tables is still however a valuable and necessary property of the

specification. For each transition table, we have generated the consistency check as a large number

of pairwise comparison theorems, such as "if row 4's hypothesis holds, then row 7's does not".

Suppose the hypothesis of row 4 is Mode = B A EvenU and the hypothesis of row 7 is Mode = C A

EventT. Then the corresponding check will take the form
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TheoremTable_Check_Four_vs_Seven:
(Legal_StateA Transition_Tables) _ ((Mode = B A Event4) _ _ (Mode = C A Event7))

Since, in our FGS example, we cannot order the mode machines by dependency, we may be

forced to assume tables that we do not yet know are disjoint. For instance, some rows of the

mode_Active_Vertical transition table refer to the mode_ VerticaLApproach transition table, but this

table also refers back to the mode_Active_Vertical transition table. For the check to hold, certain

system invariants may also have to be satisfied by the old state; these are collected in LegatState.

Recall that our Z translation of a table has the property that if two rows are not disjoint, then

the table is nondeterministic (as opposed to identically false, which would happen if we translate

the tables as a conjunction of implications). So a consistency check using such a nondisjoint table

is meaningful regardless of which of the several nondisjoint rows occurs. In contrast, if we had

used possibly inconsistent table translations, then any theorem using an inconsistent table would be

vacuously true, since the theorem would assume false hypotheses.

We have generated these consistency checks and we have done many experiments with proving

them. Most of them are straightforward and yield to Z/EVES almost automatically. Some, however,

require more effort; due to the rather large size of the Z FGS specification relative to the present

capabilities of Z/EVES, some checks have not been fully investigated.

We may also wish to prove invariants, such as this invariant translated from the CoRE specifi-

cation.

_ Invariant_ Three

Slate(term_AP_Engaged = TRU _ mode_Flight_Director 6 FD_ON)

One method of proving this theorem is to prove it inductively: show that it holds for, say, the

initial state, and then that it is preserved by all transitions. In our Z FGS specification, all of the

transitions are collected in Transition Tables.

This theorem would take the form

Theorem Invariant_Three_Theorem:

Invariant_Three A Transition_Tables _ Invariant_Three'

In our Z translation, we collect several invariants on State that we want to hold into a schema

called LegaLState. So a check of all the invariants simultaneously would take the form

Theorem Legal_State_Theorem:

Legal_State A Transition_Tables _ Legal_State'

For the present Z FGS specification, this theorem is not true as stated; for instance, for reasons

we have discussed earlier in Section 4.5, Invariant_Eleven fails. We can us Z/EVES to help us

construct counterexamples to candidate invariants, if they are indeed false.

We can also state a test for exhaustiveness of the entire system. This says that for any legal

state and any input event, there exists a (primed) legal state such that the three are related by the

predicates of Transition Tables.

Theorem Exhaustiveness_Check:

V Legal_State; event : EVENT • 3 Legal_State' • Transition_Tables
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Wecanevenstateatestfordeterminism.It isasaboveexceptthatit requiresthattheprimed
legalstatealsobeunique.

TheoremDeterminism_Check:
VLegal_State; event : EVENT • 31 Legal_State _ • Transition_Tables

We have, in some experiments, used proof attempts on these theorems to detect nondeterminism

in smaller systems. However, due to the complexity of the Z FGS, which comprises several thousand

lines, an analysis of this kind is at present impractical on our current hardware using the present

version of Z/EVES.

We did quite a bit of testing on our Z specification. Many times, when a consistency check

fails, the falsification demonstrates that there was a missing hypothesis on the state, which allowed

consideration of a state that we did not want to consider legal.

6.12 Areas for Further Work

It would be very interesting to compare our results with those of the Rockwell-Collins groups work-

ing on PVS and SCR (Miller and Hoech) and SMV (Yakhnis), as well as the work at ORA of

Dimitri Naydich and John Nowakowski using SPIN. Enhancements to Z/EVES and added compu-

tational power would greatly increase the feasibility of performing more substantial verification on

our specification.
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Chapter 7

Conclusions

7.1 The CoRE Specification

The Flight Guidance System (FGS) specified in Miller and Hoech's document [5] is intended as an

example for evaluating various requirements engineering methods. Miller and Hoech used the CoRE

method [1] to specify the FGS. The CoRE method can be used with the constraints of the SCR

discrete-time formal model [3], but the authors chose not to use it. Unless the author one adheres

to constraints such as those of the SCR formal model (e.g. a dependency ordering on the variables),

he can easily write down statements whose meaning is not clear, such as the transitions for leaving

GA, discussed in Section 4.2.

Miller and Hoech also found that the CoRE method is not entirely able to capture their intent,

so their specification is expressed in a variant of CoRE that includes several of their own extensions.

There are no formal semantics for these extensions, and some of them, such as the continuous

transitions, are not well defined.

7.2 Using Z to Define the Semantics of the FGS Specifica-

tion

In this project, we have endeavored to supply a formal semantics for the CoRE specification, using

a discrete-time model based on the SCR formal model, and expressing the results in Z. We are not

proposing that the FGS specification should have been written in Z in the first place; the tabular

notation of CoRE is quite readable and well-suited to the FGS specification. The corresponding Z

translation of the FGS specification is significantly more verbose. We have used Z as a vehicle for

expressing formal definitions of concepts that appeared in the CoRE specification without formal

definitions. The Z notation is quite well-suited to this task, for several reasons.

The standard Z approach to specifying transitions as constraints between an old state and a new

state is very similar to the SCR discrete-time formal model's approach. We attempted to translate

into Z all of the CoRE FGS notions such as events and transitions using the definitions of the SCR

formal model, where an event is a change of variable between the old state and the new state of a

polling cycle. If this event triggers another event, then both events occur in the same polling cycle.

The schema notation of Z allows us to assemble large systems from smaller components. We can

also tailor the level of detail to the situation (such as with the Dur'ation(INMODE) Booleans). Z

allows us to constrain the behavior of our system as much or as little as is appropriate.
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In thismanner,all of theconceptsadmitteda reasonablystraightforwardtranslationintoour
Z model,exceptfor the "continuous transition to FLC", described in Section 4.5. We wanted to

preserve the property that a transition, once stated as a constraint between the old state and the

new state of a polling cycle, actually held true and could not be altered in the same polling cycle.

Since the intent of this "continuous transition" is to alter the new state immediately, we could not

find a satisfactory translation without significantly altering the structure of the specification. The

concept appears to be most suited to micro-time semantics, which we have chosen to avoid.

We found the that act of expressing the notions of the CoRE FGS specification in Z helped us

to find difficulties in the original specification. For instance, while trying to formulate the concept

of a simultaneous event in Z, we explored the difficulties caused by the mode_Active_Vertical and

mode_Active_Lateral machines driving each other to leave the GA mode

7.3 Using Z/EVES on the Z Specification

Our experience has been that writing a specification, even one which is neither large nor complicated,

is prone to errors (especially trivial errors of omission, misremembered and mistyped variable names,

and so forth). Automated reasoning tool support can be quite efficient and cost-effective at detecting

the existence of such errors, and eliminating them at an early stage of the software lifecycle.

Z/EVES provides strong, automated deduction and simplification capabilities. Type checking is

done automatically. The Z/EVES user interface is well integrated with the Z notation. However,

using the prover requires a good understanding of the Z notation and of predicate logic. As with most

automated theorem provers, one must understand what Z/EVES does and does not do automatically,

in order to provide additional guidance when Z/EVES requires it. The tutorial documentation is

adequate [9].

There are some areas where Z/EVES could use significant improvement, in order to deal with

state machine verification. In particular, Z/EVES support for state machine verification would be

improved if Z/EVES support for free (enumerated) types were faster and more automatic.

The heuristics of Z/EVES are designed for general theorem proving and so are not especially

optimized for table-checking type theorems. In particular, we had to expand schemas carefully;

otherwise, we could easily introduce a large number of irrelevant hypotheses into an otherwise

simple table-check, which would drastically slow down the theorem prover. As another example,

there are several points at which we must disable some of the rewrite rules that Z/EVES uses, in

order to keep the Z/EVES from wasting a lot of time; this is particularly true when we are arguing

about membership in a subset. One must have a good idea of the type of heuristics that Z/EVES

uses in order to determine what to enable or disable at a given point in a proof.

Certain kinds of errors (including otherwise minor typos) can cause spuriously true checks. For

example, if the trigger for a transition is supposed to be Mode = A A Mode' 7£ A but is accidentally

entered Mode = A A Mode 7£ A, then the trigger is vacuously false. Thus all consistency checks of

the form

Theorem Vacuous_Table_Check:

( LegalSlale A Transition_Tables)

((Mode = A A Mode 7£ A) _ _ (Other'Trigger))

are true. An interface to a table input tool would be helpful in avoiding such errors.
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Appendix A

Formal Specification of the FGS

This is version 1.0 (10/1/97) of the Z specification of a Flight Guidance System for Task 8 of the

NASA Life-Critical Systems contract C071. This is a translation of the CoRE Flight Guidance

System described in Steven P. Miller and Karl F. Hoech's document "Specifying the Mode Logic of

a Flight Guidance System in CORE," to which the reader is referred for more detailed descriptions

of the variables. The order of this document follows as much as possible the order of the CoRE

document, given the constraint that Z requires all variables to be declared before they are used. A

few annunciations from the CoRE specification have been omitted for space reasons. Their condition

tables can be checked by the methods described in the report.

A.1 Declarations of Variable Types

We enumerate the possible input events in the free type EVENT. Some of these comprise more than

one input event; for instance, when there are two identical buttons that have the same function.

EVENT ::= HDG_Switch_Pressed l NA V_Switch_Pressed l APPR_Switch_Pressed

GA_Pressed ] AP_Engage_Switch_Pressed ] 5'YNC_On ] 5'YNC_Off

ALT_5'witch_Pressed ] VS'_5'witch_Pressed ] FLC_Switch_Pressed ] FD_Pressed

VS'_Pitch_Wheel_Changed ] ALT_I(nob_Changed

Speed_I(nob_Changed ] HDG_I(nob_Changed lAP_Disengage_Pressed

AP_Disconnect_Bar_ Up IAP_Disconnect_Bar_Down

Nay_Source_Changed I Land_On_Ground

Lateral_NA V_Track_Cond_Met I Lateral_APPR_Track_Cond_Met

Gone_Overspeed I Gone_Normal I ALTSEL_TRACK_Cond_Met

AL TSEL_ CAPTURE_ Cond_Met

Ve rt_A PPR_ Track_ Co n d_Met

No_Event

In the following pieces of Z syntax, we define the other free types that we use in the specification.

Many of these free types consist of the possible modes of various mode machines. We also define the

Boolean free type, consisting of TRU and FALS, here. (This spelling accommodates Z/EVES 1.4's

recognition of TRUE and FALSE as predicates).
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LA TERA L_MODE

VER TICA L_MODE

::z

I
I

::z

I
A L TSEL_MODE ::=

I
AP_MODE ::=

I
VERT_APPR_MODE ::=

I

L_GA I L_APPR_ARMED I L_APPR_TRACICIHDG

ROLL_ROLL_HOLD I ROLL_HDG_HOLD I NAV_ARMED

NAV_TRACI( I LATERAL_NOT_IN_MODE

PITCH I V-APPR I ALTSEL I ALTHOLD t V_GA t vs

FLC_TRACIi l FLC_OVERSPEED I VERTICAL_NOT_IN_MODE

ALTSEL_CLEARED I ALTSEL_ARMED I ALTSEL_CAPTURE

A L TSEL_ TRA CI( ] A L TSEL_NO T_IN_MODE

DISENGA GED_NORMAL IDISENGA GED_ WARNING

ENGAGED_NORMAL I ENGAGED_SYNC

VERT_APPR_CLEARED ] VERT_APPR_ARMED

VERT_A PPR_ TRA CI( ] VERT_A PPR_NO T_IN_MODE

LAMP_MODE ::= LIT ] UNLIT

SPEED_MODE ::= SPEED_OK ] TOO_FAST

S WITCH :=

BOOLEAN :=

VALIDITY :=

BAR :=

FD_MODE :=

NAV_TYPE ::=

NAV_SOURCES ::=

AP_COUPLING ::=

ON I OFF
TRU IFALS
VALIDIINVALID
UP IDOWN
FD_OFF I FD_ON_CUES IFD_ON_NO_CUES
FMS I VOR I LOC

FMS1 I FMS2 I FMS3 I VNRl l VNR21 VNR3 I VNR4

FGS I MANUAL

ALTSEL_COND ::= ALTSEL_COND_CAPTURE

I ALTSEL_COND_TRACI(

I ALTSEL_COND_NONE

In the following Z statement, we define some numerical types. Since there is no built-in support

for real numbers, we choose precisions based on the CoRE document.

AIRSPEED is measured in 1 knot increments.

ALTITUDE is measured in 1 foot increments.

ALTITUDE_RATE is measured in 0.001 kft/min (that is, 1 ft/min) increments.

HEADING is measured in 1 degree increments.

PERIOD is measured in 1 millisecond increments.

PITCH ANGLE is measured in 1 degree increments.

ROLL_ANGLE is measured in 1 degree increments.

AIRSPEED == I_

ALTITUDE == -8000 .. 56000

ALTITUDE_RATE == -32700 .. 32800

HEADING == 0 .. 359

MA CH_NUMBER == I_

PERIOD == I_

PITCH_ANGLE == -90 .. 89

ROLL_ANGLE == -180 .. 179
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A.2 Variable Declarations

In the schema aggr FCP Switches, we declare monitored variables for the switches on the Flight

Control Panel. Each switch can assume the value ON or OFF. We also declare variables that record

how many counts, or clicks, away from 0 that certain knobs are twisted. Finally, mon_AP_Dis-

connect_Bar monitors a bar that can be set to UP or DOWN, and acts as a cutoff to engaging

the autopilot when DOWN. A change in one of these variables is associated to an input event, as

described below in the event declarations.

_ aggr_FCP_Switchcs

mon_HDG_Switch :SWITCH

mon_NA V_Switch :SWITCH

mon_APPR_Switch :SWITCH

mon_ALT_Switch :SWITCH

mon_VS_Switch :SWITCH

m on_FLC_Switch:SWITCH

mon_AP_Engagc_Switch :SWITCH

mon_FD_Switch_Lcfl :SWITCH

mon_FD_Switch_Right :SWITCH

mon_VS_Pitch_Coun! : 0 .. 255

mon_ALT_Coun! : 0 .. 255

rnon_Speed_Count : 0 .. 255

mon_HDG_Count : 0 .. 255

mon_AP_Disconnect_Bar : BAR

In the following schema aggr FCP Knobs, we declare some variables that measure rotations in a

given polling cycle. For instance, term KS' Pitch_Wheel_Rotation measures the difference between

the present value of mon_VS Pitch_Count and the previous value, and so forth.

i aggr_FCP_Knobs

term_VS'_Pitch_Wheel_Rotation : -128.. 127

term_ALT_Knob_Rotation : -128.. 127

term_Speed_Knob_Rotation : -128.. 127

term_HDG_Knob_Rotation : -128 .. 127

In the following schema aggr FCP Lamps, we declare lamp variables that annunciate whether

the FGS is in a certain mode. For instance, con_HDG_Switch_Lamp is LIT exactly when the FGS

is using flight control laws that maintain a selected heading.

_ aggr_FCP_Lamps

con_HDG_Switch_Lamp : LAMP_MODE

con_NA V_Switch_Lamp : LAMP_MODE

con_APPR_Switch_Lamp : LAMP_MODE

con_ALT_Switch_Lamp : LAMP_MODE

con_VS_Switch_Lamp : LAMP_MODE

con_FLC_Switch_Lamp : LAMP_MODE

con_AP_Engagcd_Switch_Lamp : LAMP_MODE
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In thefollowingschemaSYNC,wedeclarea BooleanvariableSYNC.term SYNC is TRU ex-

actly when one of mon_SYNC_Switch_Left and mon_SYNC_Switch_Right is pressed. When TRU,

term SYNC causes the reference variables to be synchronized with the corresponding monitored

quantities.

SYNC

terrn_SYNC : BOOLEAN

In the following schema aggr Yokes_Vars, we declare monitored variables for the controls on

the pilot's and copilot's yokes, mon_AP_Disengage_SwitchLeft, mon_AP_Disengage_Switch_Right,

mon_SYNC_SwitchLeft, mon_SYNC_Switch_Right are all monitored variables for switches.

_ aggr_Yokes_Vars

mon_AP_Disengage_Switch_Left :SWITCH

mon_AP_Disengage_Switch_Right : SWITCH

mon_SYNC_Switch_Left : SWITCH

mon_SYNC_Switch_Right : SWITCH

SYNC

In the following schema aggr Throttle_Vars, we declare monitored variables for the controls

on the pilot's and copilot's throttles, mon_GA_Switch_Left and mon_GA_Switch_Right are both

switches.

i aggr_Throttles_ Vars

mon_GA_Switch_Left :SWITCH

rnon_GA_Switch_Right :SWITCH

The following schema aggr References declares several term variables that are used as references

to compare with monitored variables, term VS Pitch_Wheel_Rotation, term ALT_Knob_Rotation,

term Speed_Knob_Rotation, and term HDG_Knob_Rotation are each set to be half of the monitored

knob count; they each range from -128 to 127 clicks.

term Selected_Heading stores the heading, set by the crew, that the FGS uses when mode_Active_-

Lateral is in HDG mode or in the ARMED submodes of NAV or L_APPR; it is of type

HEADING and is measured from 0 to 359 degrees in 1 degree increments.

term Preselected_Altitude stores the altitude, set by the crew, that the FGS uses when mode_-

Active_Verticalis in ALTSEL mode; it is of type ALTITUDE and ranges from-8000 to 56000

feet in 100 foot increments.

term Reference_IAS stores the reference indicated airspeed; it is of type AIRSPEED, and it ranges

from 0 to 512 knots in 1 knot increments.

term Reference_Mach stores the reference indicated Mach number. It is of type zv MACH_NUMBER

and is measured from 0 to 1 Mach in 1/100 Mach increments.

term Reference_Heading stores the reference heading. It is of type HEADING and is measured

from 0 to 359 degrees in 1 degree increments.
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term Reference_Altitude stores the reference altitude. It is of type ALTITUDE and ranges from

-800 to 56000 feet, in 100 foot increments.

term Reference_Pitch stores the reference pitch. It is of type PITCH ANGLE and ranges from -12

to 20 degrees in 1 degree increments.

term Reference_Roll stores the reference roll. It is of type ROLL_ANGLE and ranges from -180 to

1S0 degrees in 1 degree increments.

term Reference_Vertical_Speed stores the reference vertical speed. It is of type ALTITUDE_RATE

and ranges from -5 to 5 kft/min in 0.1 kft/min increments; thus it is measured in multiples of

lO0 of the O.OO1 kft/min increments of ALTITUDE_RATE.

_ aggr_Rcfcrences

lerm_Preselecled_Allilude : ALTITUDE

term_Selected_Heading : HEADING

lerm_Reference_IAS : AIRSPEED

term_Reference_Mach : MA CH_NUMBER

term_Reference_Heading : HEADING

term_Reference_Altitude : ALTITUDE

term_Reference_Pitch : PITCH_ANGLE

term_Reference_Roll : ROLL_ANGLE

term_Reference_ Vertical_Speed : ALTITUDE_RATE

terrn_Preselected_Altitude C {i : ALTITUDE • 100 • i}

terrn_Reference_IAS C 0 .. 512

terrn_Reference_Mach C 0 .. 100

term_Reference_Altitude C {i : ALTITUDE • 100 • i}

term_Reference_Pitch C -12 .. 20

term_Reference_Roll C -27 .. 27

term_Refere,_ce_Verticak&eed _ {i : ALTITUDE_RATE • 100 • i} n (-5000.. 5000)

The schema aggr Reference_Annunciations declares variables for the console annunciations

the crew.

_ aggr_Reference_Annunciations

con_Selected_Heading_Annunciation : HEADING

con_Preselected_Altitude_Annunciation : ALTITUDE

con_Reference_IAS_Annunciation : AIRSPEED

con_Reference_ VS_Annunciation : ALTITUDE_RATE

con_Reference_IAS_Annunciation C 0 .. 512

con_Reference_VS_Annunciation C {i : ALTITUDE_RATE • 100 • i} Yl (-5000 .. 5000)

to

The following schema INMODE_Booleans declares some Booleans that indicate whether certain

mode machines have been in a certain mode for longer than a preset amount of time. (gt stands for

"greater than" .)

43



_ INMODE_Booleans

Duralion_INMODE_AP_Disengaged_ Warning_gt_ten_see : BOOLEAN

Duration_INMODE_ Vert_Appr_Track_gt_const_min_armed_period :BOOLEAN

Duration_INMODE_NA V_ARMED_gt_const_min_armed_period : BOOLEAN

Duration_INMODE_APPR_ARMED_gt_eonst_min_armed_period :BOOLEAN

Duration_INMODE_AL TSEL_ARMED_gt_eonst_min_armed_period :BOOLEAN

Duration_INMODE_AL TSEL_ CAPT_gt_const_min_armed_period :BOOLEAN

The following schema aggr" Air" Data declares several monitored variables.

mon_Indicated_Airspeed, the indicated airspeed as measured by comparing the ram (pitot) air

pressure with the static air pressure, can range from 0 to 512 knots.

mon_h_dicated_Mach_Number, the ratio of true airspeed to the speed of sound, can range from 0 to

1 Mach in 1/100 Mach increments, mon_Indicated_Altitude, computed from static air pressure

and corrected for local ambient pressure conditions can range from -8000 to 56000 feet, in 1

foot increments.

mon_Pressure_Altitude, the altitude computed from the static air pressure assuming standard pres-

sure conditions, is of type ALTITUDE and can range from -8000 to 56000 feet, in 1 foot

increments.

mon_Roll_Angle, the roll angle measured in degrees from wings level, with positive value indicating

that the right wing is down, is of type ROLL_ANGLE and can range from -180 to 180 degrees

in 1 degree increments.

mon_Pitch_Angle, the pitch angle measured in degrees nose-up from level, is of type PITCH -

ANGLE and can range from -90 to 90 degrees in 1 degree increments.

mon_Vertical_Speed, the vertical speed of the aircraft computed by comparing instantaneous air

pressure with that filtered through a diaphragm with a calibrated leak, is of type ALTITUDE_RATE

and can range from -32.7 to 32.7 kft/min, in 0.016 kft/min increments; it is thus measured in

multiples of 16 of the 0.001 kft/min increments of the type ALTITUDE_RATE.

mon_Heading is the aircraft's heading, measured in degrees clockwise from magnetic North. It is

of type HEADING and ranges from 0 to 359 degrees in 1 degree increments.

mon_On_Ground is va Boolean that is TRU exactly when the aircraft is on the ground.

term Above_Transition Altitude is a Boolean that is TRU exactly when the the aircraft's altitude

is above a certain constant.

term Overspeed is Boolean that is TRUexactly when a certain mode machine, mode_Overspeed has

the mode TOO_FAST, which occurs when the aircraft exceeds its maximum operating speed.
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_ aggr_Air_Dala

mon_Indicaled_Airspeed : AIRSPEED

mon_h_dicaled_Mach_Number : MA CH_NUMBER

mort_Indicated_Altitude : ALTITUDE

mon_On_Ground : BOOLEAN

term_Above_Transition_Altitude :BOOLEAN

lerm_Overspeed : BOOLEAN

rnon_Pressure_Allilude : ALTITUDE

mon_Roll_Angle : ROLL_ANGLE

mon_Pilch_Angle : PITCH_ANGLE

mon_ Verlical_Speed :ALTITUDE_RATE

mort_Heading : HEADING

rnon_Indicaled_Airspeed 6 0 .. 512

mon_Indicaled_Mach_Number 6 0 .. 100

rnon_Verlical_Speed 6 {i : ALTITUDE_RATE • 16 • i}

The following axiomatic definition declares the maximum safe speed of the aircraft, measured

in knots (term_Vmo) and in Mach number (term_Mmo). We also declare the constant const_Tran-

silion_Allilude, above which the aircraft uses Mach number to measure airspeed and pressure al-

titude, and below which the aircraft uses indicated airspeed and indicated altitude. This constant

equals 18000 ft.

term_ Vmo : I_

lerm_Mmo : H

consl_Transilion_Allilude : H

consl_Transilion_Allilude = 18000

The following schema Overspeed declares the mode_Overspeed mode machine. This mode machine

has two modes: SPEED_OK when the aircraft is flying at a safe operating speed, and TOO_FAST

when the aircraft is flying at too high a speed.

_ Overspeed

mode_Overspeed : SPEED_MODE

i nit_Of_Overspeed

Overspeed

mode_Overspeed = SPEED_OK

The following schema aggr Nav_Source_Dala declares some navigation variables, term Sel-

ected_Nay_Type stores what kind of navigational device is currently selected: FMS if the selected

source is a Flight Management System, VOR if the selected source is a VHF omnirange navigation

beacon, and LOC if the selected navigation source is an ILS localizer beacon, mon_Selected_-

Nav_Sour'ce_Slalus is VALID precisely when the navigational source is generating valid data, and

INVALID otherwise. Finally, the monitored Boolean mon_Valid_Glideslope is TRU precisely when

the FGS is receiving a valid ILS glideslope signal, and FALS otherwise.
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i aggr_Nav_Source_Dala

term_Selected_Nay_Type : NA V_TYPE

mon_Selecled_Nav_Source_Slalus : VALIDITY

mon_Valid_Glideslope : BOOLEAN

The following schema aggr" Nav_Source_Mons declares the navigational monitored variables. The

mon_Selecled_Nav_Source can be one of seven values: FMS1, FMS2, FMS3 indicate that the first,

second, or third Flight Management system is the selected navigation source, and VNR1, VNR2,

VNR3, VNR4 indicate that the first, second, third, or fourth VHF Navigation Receiver is the selected

navigation source.

mon_S'elected_Nav_S'our'ce_Frequency is a partial function from NAV_SOURCES to the range

[108.0, 136.0] MHz (measured in 0.1 megahertz increments). This function sends a source in VNR1,

..., VNR4 to the carrier frequency to which it is tuned.

mon_Nav_S'ource_Signal_Tqpe is a partial function from NAV_SOURCES to NAV_TYPE. This

function sends a source in VNR1, ..., VNR4 to the type of frequency (VOR, LOC) to which the

VHF Navigation Receiver is tuned.

i aggr_Nav_S'ource_Mons

mon_Selecled_Nav_Source : NA V_SO URCES

mon_Selecled_Nav_Source_Frequency : NAV_SOURCES -++ 1080.. 1360

mon_Nav_Source_Signal_Type : NA V_SO URCES -++ NA V_TYPE

The following schema Aulopilol declares the mode_Aulopilol mode machine. This machine can

be in the following two mode (each of which has submodes): ENGAGED, when the autopilot is

engaged and processing the flight control laws, DIS'ENGAGED, when the autopilot is not engaged.

The AP_Engaged_Mode machine has two values when mode_Aulopilol = ENGAGED: AP_EN-

GAGED_NORMAL when the SYNC switch is not pressed; and AP_ENGAGED_SYNC when the

SYNC switch is pressed (and thus the autopilot is temporarily disengaged); when mode_Aulopilol

7_ ENGAGED then AP_Engaged_Mode = AP_ENGAGED_NOT_IN MODE.

The AP_Disengaged_Mode machine has two values when mode_Aulopilol = DIS'ENGAGED:

AP_DISENGAGED_WARNING, when mode_Aulopilol has recently switched from ENGAGED to

DIS'ENGAGED and the autopilot is still functioning; and AP_DISENGAGED_NORMAL, once

mode_Aulopilol = DIS'ENGAGED more than 10 seconds, and the autopilot actually disenages.

If mode_Aulopilol 7_ DIS'ENGAGED then AP_Disengaged_Mode = AP_DISENGAGED_NOT_-

IN MODE.

The mon_AP_Disconnecl_Bar can be UP (when the crew has not pressed down the autopilot

disconnect bar) or DOWN (when the crew has pressed the bar, which forces the autopilot to to be

disengaged).

The Boolean ler'm_AP_Engaged is TR U exactly when mode_Aulopilol is ENGAGED, and FALS

otherwise.

The monitored variable con_AP_Coupling has two values: when set to FGS, the command input

to the control surfaces of the aircraft is generated by the FGS; when set to MANUAL, the command

input to the control surfaces of the aircraft is manually generated by the pilots using the control

yoke and rudder pedals.

The monitored switch con_AP_Disengage_War'nin9 has two values: when set to ON, the disen-

gagement of the autopilot is signaled to the flight crew by sounding the EICAS autopilot disengage-
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mantauralwarningandbythepresenceofa visualwarningontheEFIS.Whensetto OFF, then

disengagement of the autpilot is not being signaled to the flight crew.

The AP_Disengaged_Warning_Cloclc is set to 0 whenever AP_Disengaged_Mode enters AP_DIS-

ENGAGED_ WARNING mode, and is incremented each cycle that AP_Disengaged_Mode = AP_DIS-

ENGAGED_ WARNING.

_Autopilot

mode_Autopilot : AP_MODE

mon_AP_Disconnect_Bar : BAR

terrn_AP_Engaged : BOOLEAN

con_AP_Coupling : AP_CO UPLING

con_A P_Disengage_ Warning : S WITCH

i nil_Of_Aulopilol

Aulopilol

mode_Aulopilol = DISENGAGED_NORMAL

The following schema Lateral_Terms defines some terms associated with the lateral mode. The

Boolean term_Within_Lateral_NAV_Capture_Window is TRU exactly when the aircraft has the

appropriate operating conditions (e.g. altitude, speed, position, and heading) to make a safe capture

of the navigation track, and FALS otherwise. The precise definition depends on the customer.

The Boolean term Lateral_NAV_Track_Cond_Met is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a lateral navigation source, and FALS otherwise.

The Boolean term Within_Lateral_APPR_Capture_Window is TRU exactly when the aircraft

has the appropriate operating conditions (e.g. altitude, speed, position, and heading) to make a safe

capture of the approach track, and FALS otherwise. The precise definition depends on the customer.

The Boolean term Lateral_NAV_Track_Cond_Met is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a precision lateral approach source, and FALS

otherwise.

The Boolean term_Roll_LE_Threshold is TRU exactly when the aircraft's roll angle is less than

or equal to the constant consl_Rool_Selection_Threshold.

The constant consl_Roll_Selection_Threshold marks the boundary between the selection of the

ROLL_HOLD and HDG_HOLD modes of the submode Roll_Mode.

_ Lateral_ Terms

term_ Within_Lateral_NA V_Caplure_ Window : BOOLEAN

term_Lateral_NAV_Traclc_Cond_Met :BOOLEAN

term_ Within_Lateral_APPR_Capture_ Window : BOOLEAN

term_Lateral_APPR_Traclc_Cond_Met : BOOLEAN

term_Roll_LE_Threshold : BOOLEAN

const_Roll_Selection_Threshold : H

const_Roll_Selection_Threshold = 50

The following schema Vertical_Terms declares some term variables relevant to the mode_Act-

ive_Vertical mode machine. The Boolean term Within_Vertical_APPR_Capture_Window is TRU
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exactlywhentheaircrafthastheappropriateoperatingconditions(e.g.altitude,speed,position,
andheading)to makea safecaptureof the approachtrack,andFALS otherwise. The precise

definition depends on the customer.

The Boolean lerm_Verlical_APPR_TracLCond_Mel is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a precision vertical approach source, and FALS

otherwise.

i Verlical_Terms

lerm_ Wilhin_ Verlical_APPR_ Caplure_ Window : BOOLEAN

lerm_ Verlical_APPR_Track_Cond_Mel : BOOLEAN

The following schema Allsel_Terms declares the term variable term ALTS'EL_Cond. This vari-

able has three possible values: ALTS'EL_CAPTURE, ALTS'EL_TRACI(, ALTS'EL_NONE. It takes

the values ALTS'EL_CAPTURE and ALTS'EL_TRACI( exactly when the aircraft has the appro-

priate operating conditions (e.g. altitude, speed, position, and heading) relative to lerm_Pre-

selecled_Allilude to make a safe capture and safe track, respectively. The precise definition depends

on the custome

Altsel_Terms

_ lerrn_ALTSEL_Cond : ALTSEL_COND

The following axiomatic definition declares display constants.

const_annunciation_update_deadline stores the maximum amount of time allowed for a reference

annunciation (such as term_Refer'ence_Pilch) to respond to an event; it is of type PERIOD and is

measured in milliseconds.

const_blinLtime is the amount of time a mode annunciation blinks upon change; it is of type

PERIOD and is measured in milliseconds.

const_display_update_deadline stores the maximum amount of time allowed for a flight display

or indicator lamp to respond to an event; it is of type PERIOD and is measured in milliseconds.

consl_annunc_update_deadline : PERIOD

const_blink_time : PERIOD

const_display_updale_deadline : PERIOD

const_annunc_update_deadline = 100

const_blink_time = 5000

consl_display_update_deadline = 100

A.3 Collections of Events

In the following axiomatic definitions, we enumerate some useful subsets of events. For the modes

mode_Aclive_ Ver'lical and rnode_Aclive_Laler'al, we list all of the input events that trigger transitions

in their tables, for use in separating some transitions as discussed in section 4.3. These set definitions

are labeled as rewrite rules for Z/EVES so that they can be used in proofs if necessary.
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Vertical_Events : P EVENT

[rule Vertical_Events_Rule]

Vertical_Events = {SYNC_On, VS_Pilch_Wheel_Changed,

ALTSEL_CAPTURE_Cond_Mel, ALT_I(nob_Changed, AP_Engage_Swilch_Pressed,

AL T_Swilch_Pressed, VS_Swilch_Pressed,

FL C_Swilch_Pressed, Verl_APPR_Track_Cond_Mel,

GA_Pressed, SYNC_On }

Lateral_Events : P EVENT

[rule Lateral_Events_Rule]

Lateral_Events = { HDG_Switch_Pressed, NA V_Switch_Pressed,

Nav_Source_ Changed , A PPR_Switch_Pressed , A P_Engage_Switch_Pressed , S YN C_ On }

The subsets FlightMode_Requested, LateratMode_Requested, and Vertical_Mode_Requested are

useful in the specification of the mode machine transitions, as discussed in section 6.4. These set

definitions are labeled as rewrite rules for Z/EVES so that they can be used in proofs if necessary.

Flight_Mode_Requested : P EVENT

[rule Flight_Mode_Requested_Rule]

Flight_Mode_Requested = { HDG_Swilch_Pressed, NA V_Swilch_Pressed,

APPR_Switch_Pressed, VS_Switch_Pressed, AL T_Switch_Pressed,

FL C_Swilch_Pressed, GA_Pressed }

Lateral_Mode_Requested : F EVENT

[rule Lateral_Mode_Requested_Rule]

Lateral_Mode_Requested = { HDG_Swilch_Pressed, NA V_Swilch_Pressed,

APPR_Swilch_Pressed, GA_Pressed }

Vertical_Mode_Requested : F EVENT

[rule Vertical_Mode_Requested_Rule]

Vertical_Mode_Requested = { VS_Swilch_Pressed,

AL T_Swilch_Pressed, FLC_Swilch_Pressed, GA_Pressed }

A.4 Collections of modes

In the following axiomatic definitions, we define some collections of modes that are used to simulate

the hierarchical mode machines of the CoRE specification, as discussed in 6.6. A CoRE expression

such as mode_Flight_Director = ON is replaced by a Z expression mode_Flighl_Direclor C FD_ON.

FD_ON : F FD_MODE

[rule FD_ON_Rule]

FD_ON = {FD_ON_CUES, FD_ON_NO_CUES}
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ENGAGED,DISENGAGED : P AP_MODE

[rule ENGAGED_Rule]

ENGA GED = { ENGA GED_NORMA L, ENGA GED_S YNC }

[rule DISENGAGED_Rule]

DISENGA GED = { DISENGA GED_NORMA L, DISENGA GED_ WARNING }

ROLL : P LATERAL_MODE

[rule ROLL_MODE_Rule]

ROLL = {ROLL_ROLL_HOLD, ROLL_HDG_HOLD}

NAV : P LATERAL_MODE

[rule NAV_MODE_Rule]

NAV = {NAV_ARMED, NAV_TRACI(}

L_APPR : P LATERAL_MODE

[rule L_PPR_MODE_Rule]

L_A PPR = { L_A PPR_A RMED, L_A PPR_ TRA CI( }

FLC : I? VERTICAL_MODE

[rule FLC_Rule]

FLC = {FLC_TRACI(, FLC_OVERSPEED}

ALTSEL_ENABLED, ALTSEL_A CTIVE : P ALTSEL_MODE

[rule ALTSEL_ENABLED_Rule]

ALTSEL_ENABLED = {ALTSEL_ARMED, ALTSEL_CAPTURE, ALTSEL_TRACI(}

[rule ALTSEL_ACTIVE_Rule]

ALTSEL_A CTIVE = {ALTSEL_CAPTURE, ALTSEL_ TRA CI(}

VERT_APPR_ENABLED : F VERT_APPR_MODE

[rule VERT_APPR_ENABLED_Rule]

VER T_A PPR_ENA BL ED = { VER T_A PPR_A RMED, VER T_A PPR_ TRA CI( }

A.5 Flight Mode Declarations

The following schema Flight_Director declares a mode machine mode_FlightDireclor. It has three

modes: FD_OFF, FD_ON_CUES, FD_ON_NO_CUES. It is in mode FD_OFF exactly when the

Flight Director is off. It is in mode FD_ON_CUES exactly when the Flight Director is on and

annunciating cues to the crew, and it is in mode FD_ON_NO_CUESexaetly when the Flight Director

is on but not annunciating to the crew.
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Flighl_Direclor

mode_Flighl_Direclor : FD_MODE

The following four schemas Aclive_Laleral, Aclive_Verlical, Allilude_Selecl, and Verlical_Approach

declare the principal mode machines of the FGS. The NOT_IN MODE modes are used to simulate

the CoRE sustaining condition imposed on them, which is that mode_Fiiglat_Director = ON.

The following schema Aclive_Laler'al declares a mode machine mode_Active_Lateral. This mode

machine has the following modes: HDG, ROLL_ROLL_HOLD, ROLL_HDG_HOLD, NA V_ARMED,

NAV_TRACK, L_GA, L_APPR_ARMED, L_APPR_TRACK, LATERAL_NOT_IN MODE.

When mode_Active_Lateral is in HDG, the FGS generates commands to capture and maintain

the selected heading.

When mode_Aclive_Laleralis in ROLL_ROLL_HOLD, the FGS generates commands to maintain

the reference roll of the aircraft.

When mode_Aclive_Laleralis in ROLL_HDG_HOLD, then FGS generates commands to maintain

the reference heading of the aircraft.

When mode_Active_Lateral is in NAV_ARMED, the FGS generates commands to capture and

maintain the selected heading until an external navigation source such as a VOR, LOC, or FMS can

be captured.

When mode_Active_Lateral is in NAV_TRACK, the FGS generates commands to capture and

track and external navigation source such as a VOR, LOC, or FMS.

When mode_Active_Lateral is in L_GA, the FGS generates commands to perform a Go Around

operation.

When mode_Active_Lateral is in L_APPR_ARMED, the aircraft generates commands to capture

and maintain the selected heading until a precision navigation source such as LOC can be detected.

When mode_Active_Lateral is in L_APPR_TRACK, the FGS generates commands to capture

and track a precision navigation source such as a LOC.

When mode_Active_Lateral is in NOT_IN MODE, the Flight Director is off.

Active_Lateral

_ mode_Active_Lateral : LATERAL_MODE

The following schema Active_Vertical declares a mode machine mode_Active_Vertical. This

mode machine has the following modes: PITCH, V_APPR, ALTSEL, ALTHOLD, V_GA, VS,

FLC_TRACK, FLC_OVERSPEED, VERTICAL_NOT_IN MODE.

When mode_Aclive_Verlicalis in PITCH, the FGS generates commands to maintain the reference

pitch.

When mode_Active_Vertical is in V_APPR, the behavior of the FGS is determined by the

mode_ Vertical_Approach mode machine.

When mode_Active_Vertical is in ALTSEL, the behavior of the FGS is determined by the

mode_Altitude_Select mode machine.

When mode_Active_Vertical is in ALTHOLD, the FGS generates pitch commands to maintain

the reference altitude.

When mode_Active_Vertical is in VS, the FGS generates pitch commands to maintain the refer-

ence vertical speed.

When mode_Active_Vertical is in FLC_TRACK, the FGS generates commands to acquire and

track the reference airspeed (or reference mach number, depending on the altitude), taking into
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accountthe pilot'sintent to climbor descendasindicatedby the preselectedaltitudeandthe
aircraft'sabilityto accomplishthatintent.

Whenmode_Active_Vertical is in FLC_OVERSPEED the FGS generates pitch commands to

acquire an airspeed or Mach number slightly below the maximum operating airspeed (Vmo or Mmo).

When mode_Active_Vertical is in VERTICAL_NOT_IN MODE, the Flight Director is off.

Active_ Vertical

mode_Active_Vertical : VERTICAL_MODE

The following schema Allilude_Selecl declares a mode machine mode_Allilude_Selecl. This mode

machine has the following modes: ALTSEL_CLEARED, ALTSEL_ARMED, ALTSEL_CAPTURE,

A L TSEL_ TRACK, A L TSEL_NO T_IN MODE.

When mode_Altitude_Select is in ALTSEL_CLEARED, the FGS generates no commands to

monitor, capture, or track the preselected altitude; vertical guidance commands are generated using

the mode_Active_ Vertical mode machine.

When mode_Altitude_Select is in ALTSEL_ARMED, the FGS monitors the aircraft closure rate

towards the preselected altitude and determines the optimum capture point; vertical guidance com-

mands are generated using the mode_Active_Vertical mode machine.

When mode_Altitude_Select is in ALTSEL_CAPTURE, the FGS generated commands for a

smooth, low-acceleration acquisition of the preselected altitude.

When mode_Altitude_Select is in ALTSEL_TRACK, the FGS generates commands to maintain

the preslected altitude.

When mode_Altitude_Select is in ALTSEL_NOT_IN MODE, the Flight Director is off.

Allilude_Selecl

mode_Allilude_Selecl : ALTSEL_MODE

The following schema Vertical_Approach declares a mode machine mode_Vertical_Approach.

This mode machine has the following modes: VERT_APPR_CLEARED, VERT_APPR_ARMED,

VERT_A PPR_ TRACK, VERT_A PPR_NO T_IN MODE.

When in VERT_APPR_CLEARED, the FGS generates no commands to track or monitor a

vertical guidance source; vertical guidance commands are generated using the mode_Active_Vertical

mode machine.

When in VERT_APPR_ARMED, the FGS monitors aircraft closure towards the approach glides-

lope (if ILS) or glide-path (if FMS) and determines the optimum capture point; vertical guidance

commands are generated using the mode_Active_Vertical mode machine.

When in VERT_APPR_TRACK, the FGS generates pitch commands to capture and track the

glideslope (if ILS) or glide-path (if FMS).

When in VERT_APPR_NOT_IN MODE, the Flight Director is off.

_ Verlical_Approach

mode_Vertical_Approach : VERT_APPR_MODE

The schema aggr Flight_Modes collects the flight modes:
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_ aggr_Flighl_Modes

Flight_Director

Active_Lateral

Active_ Vertical

Altitude_Select

Vertical_Approach

A.6 The FGS State

The schema Variables collects the variables together in a large schema that we will use in our

declaration of State:

_ Variables

aggr_FCP_Lamps

aggr_FCP_Swilches

aggr_FCP_Kn obs

aggr_ Yokes_ Vats

aggr_ Throttles_ Vats

aggr_References

aggr_Reference_Annuncialions

aggr_Air_Dala

Overspeed

aggr_Nav_Source_Dala

aggr_Nav_Source_Mons

Aulopilol

Lateral_Terms

Vertical_ Terms

Altsel_Terms

INMODE_Booleans

aggr_Flight_Modes

The schema The_Event defines the variable event, which carries the input event of a polling cycle:

The_Event

_ evenl : EVENT

A.7 Definitions of Some Input Events and Terms

In the following schemas, we define the input events. Each input event corresponds to some moni-

tored variable (or combination of monitored variables) changing its value during a polling cycle. All

changes of monitored variables that trigger transitions are listed here. Since the variable event can

only have one value during a given polling cycle, the One Input Assumption is effectively guaranteed

by this construction. Some input event definitions are given later, because of the order in which

they appear in the CoRE specification.
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_ Event_HDG_Switch_Pressed

A aggr_FCP_Switches

The_Event

event = HDG_Switch_Pressed

mon_HDG_Switch = OFF A mon_HDG_Switch _= ON

_ Event_NA V_Switch_Pressed

A aggr_FCP_Switches

The_Event

event = NA V_Switch_Pressed

mon_NAV_Switch = OFF A mon_NAV_Switch' = ON

_ Event_APPR_Switch_Pressed

A aggr_FCP_Switches

The_Event

event = APPR_Switch_Pressed

(mon_APPR_Switch = OFF A mon_APPR_Switch _= ON)

_ Event_ALT_Switch_Pressed

A aggr_FCP_Switches

The_Event

event = ALT_Swilch_Pressed

(mon_ALT_Swilch = OFF A mon_ALT_Swilch _ = ON)

_ Evenl_FL C_Swilch_Pressed

A aggr_FCP_Swilches

The_Event

event = FLC_Swilch_Pressed

(mon_FLC_Swilch = OFF A mon_FLC_Swilch _ = ON)

_ Event_ VS_Swilch_Pressed

A aggr_FCP_Swilches

The_Event

event = VS_Switch_Pressed

(mon_VS_Switch = OFF A mon_VS_Switch _ = ON)

_ Def_Of_term_ VS'_Pitch_ Wheel_Rotation

A aggr_FCP_Kn obs

A aggr_FCP_Switches

term_ VS_Pitch_ Wheel_Rotation _ =

((mon_VS_Pitch_Connt'- mon_VS_Pitch_Connt + 128)rood 256) - 128
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_ Event_ VS'_Pilch_ Wheel_Changed

The_Event

A aggr_FCP_Swilches

event = VS_Pilch_Wheel_Changed _=_

(mort_ VS_Pilch_Counl 7_ mort_ VS_Pilch_CounV)

_ Def_Of_lerm_ALT_Knob_Rolalion

A aggr_FCP_Kn obs

A aggr_FCP_5'wilches

lerm_AL T_Knob_Rolalion _ =

((._on_ALT_Counr - ._on_ALT_Count + 128) rood 256) - 128

_ Evenl_ALT_Knob_Changed

The_Event

A aggr_FCP_Swilches

event = ALT_Knob_Changed

(mon_ALT_Counl 7_ mon_ALT_Counl _)

_ Def_Of_term_Speed_Knob_Rolalion

A aggr_FCP_Kn obs

A aggr_FCP_Swilches

term_Speed_Knob_Rotation _ =

((._on_@eed_Counr - ._on_@eed_Count + 128) rood 256) - 128

_ Event_Speed_Knob_Changed

The_Event

A aggr_FCP_Swilches

event = Speed_Knob_Changed _=_

(._on__eed_Count ¢ ._on__eed_Co_nr)

_ Def_Of_term_HDG_Knob_Rolalion

A aggr_FCP_Kn obs

A aggr_FCP_S'wilches

lerm_HDG_Knob_Rolalion _ =

((mon_HDG_Count' - mon_HDG_Count + 128) rood 256) - 128

_ Evenl_HDG_Knob_Changed

The_Evenl

A aggr_FCP_Swilches

evenl = HDG_Knob_Changed

(mon_HDG_Counl 7_ mon_HDG_Counl _)
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_ Event_AP_Engage_Switch_Pressed

A aggr_FCP_Switches

AAutopilot

The_Event

event = AP_Engage_Switch_Pressed ¢_z

(mon_AP_Engage_Switch = OFF A mon_AP_Engage_Switch _= ON)

_ Event_FD_Pressed

The_Event

A aggr_FCP_Switches

event = FD_Pressed ¢:_

((mon_FD_Switch_Left = OFF A mon_FD_Switch_Left'= ON)

V (mon_FD_Switch_Right = OFF A mon_FD_Switch_RighF = ON))

_ Event_AP_Disengage_Pressed

AAutopilot

A aggr_ Yokes_ Vars

The_Event

event = AP_Disengage_Pressed ¢_z

(( mon_AP_Disengage_Switch_Lefl = OFF

A mon_AP_Disengage_Switeh_LefF = ON) V

(mon_AP_Disengage_Switch_Right = OFF

A mon_AP_Disengage_Switeh_RighF = ON))

_ Def_Of_term_SYNC

SYNC

aggr_ Yokes_ Vats

term_SYNC = TRU ¢:_

(mon_SYNC_Switch_Left = ON V mon_SYNC_Switch_Right = ON)

_ Event_GA_Pressed

A aggr_ Throttles_ Vats

The_Event

event = GA_Pressed ¢:_

((mon_GA_Switch_Left = OFF A mon_GA_Switch_Left' = ON) V

(mon_GA_Switch_Right = OFF A mon_GA_Switch_RighF = ON))
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A.8 Event Tables

_ Def_Of_term_Selected_Heading

A aggr_References

A aggr_FCP_Kn obs

The_Event

event = HDG_I(nob_Changed A

(term_Selected_Heading _=

(term_Selected_Heading + term_HDG_I(nob_Rotation' rood 360))

V ((7 evenl = HDG_I(nob_Changed) A lerm_Selecled_Heading' =

lerm_Selecled_Heading )

_ Init_Of_term_Selected_Iteading

aggr_Air_Data

aggr_References

term_Selected_Iteading = mort_Heading

_ Def_Of_term_Preselected_Altitude

A aggr_References

The_Event

A aggr_FCP_Kn obs

(event = AL T_Knob_Changed A term_Preselected_Altitude _ =

rain({36000, max({O, term_Preselected_A ltitude + 100 • term_A L T_Knob_Rotation' ) ) ) ) ) V

(7 (event = ALT_Knob_Changed) A term_Preselected_Altitude' =

term_Preselected_A ltitude )

i lnit_Of_term_Preselected_Altitude

aggr_References

term_Preselected_Altitude = 31000
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_ Def_Of_term_Referenee_IAS

A aggr_Referenees

A aggr_FCP_Kn obs

A aggr_Air_Data

ASYNC

The_Event

A aggr_Flight_Modes

(mode-Flight-Director _ C FD_ON A mode_Active_Vertical _ FLC A

mode_Active_Verticaff C FLC A terrn_SYNC _ = FALS

A terrn_Reference_IAS _ = mon_Indicated_Airspeed _)

V (mode_Flight_Director _ C FD_ON A mode_Active_Verticaff E FLC A terrn_SYNC _ = TRU

A terrn_Reference_IAS _ = mon_Indicated_Airspeed _)

V (mode_Flight_Director C FD_ON

A mode_Active_Vertical _ FLC

A event = Speed_I(nob_Changed

A mon_Indicated_Airspeed _= terrn_Reference_IAS _ =

rain{512, max{O, terrn_Reference_IAS + term_Speed_I(nob_Rotation'} } )

V (mode_Flight_Director C FD_ON A mode_Active_Vertical C FLC

A lerm_SYNC _ = FALS A event = Speed_Knob_Changed

A mon_Indicaled_Airspeed _= lerrn_Reference_IAS _ =

rain{512, max{O, terrn_Reference_IAS + term_Speed_I(nob_Rotation'} } )

V (_ ((mode_Flight_Director' C FD_ON A mode_Active_Vertical _ FLC A

mode_Active_Verticaff C FLC A terrn_SYNC _ = FALS)

V (mode_Flight_Directo/C FD_ON A mode_Active_Verticaff C FLC A terrn_SYNC _ = TRU)

V (mode_Flight_Director C FD_ON

A mode_Active_Vertical _ FLC

A event = Speed_Knob_Changed)

V (mode_Flight_Director C FD_ON A mode_Active_Vertical C FLC

A terrn_SYNC _ = FALS A event = Speed_I(nob_Changed))

A term_Reference_IAS _ = term_Reference_IAS)
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_ Dcf_Of_term_Rcfcrence_Heading

A aggr_Rcfcrences

A aggr_FCP_I(n obs

A aggr_Air_Data

ASYNC

The_Even!

A aggr_Flighl_Modes

((_ mode_Aclive_Laleral = ROLL_HDG_HOLD) A

mode_Aclive_Laleral _ : ROLL_HDG_HOLD A lerm_SYNC _ : FALS

A term_Reference_Headinf : mon_Headinf)

V (mode_Aclive_Laleral _ : ROLL_HDG_HOLD A lerm_SYNC _ : TRU

A term_Reference_Headinf : mon_Headinf)

v (_ (((_ ._od__Ac_iw_i_._l = ROLL_HDG_HOLD) A

mode_Aclive_Laleral _ : ROLL_HDG_HOLD A lerm_SYNC _ : FALS)

V (mode_Active_Lateral _ = ROLL_HDG_HOLD A term_SYNC _ = TRU))

A term_Reference_Headinf : term_Reference_Heading)

_ Def_Of_term_Reference_Allilude

A aggr_References

A aggr_FCP_I(n obs

A aggr_Air_Dala

ASYNC

The_Even!

A aggr_Flight_Modes

((_ mode_Active_Vertical : ALTHOLD) A mode_Active_Vertical _ : ALTHOLD A

lerm_Above_Transilion_Allilude _ : TRU A lerm_SYNC _ : FALS

A term_Reference_Altitude _ = mon_Pressure_Altitude _)

V (mode_Active_Vertical _ : ALTHOLD A term_Above_Transition_Altitude _ : TRU A

term_SYNC _ : TRU

A term_Reference_Altitude I = mon_Pressure_Altitude I)

V ((_ mode_Aclive_Verlical = ALTHOLD) A mode_Aclive_Verlical _= ALTHOLD A
lerm_Above_Transilion_Allilude _ = FALS A Ierm_SYNC _ = FALS

A lerm_Reference_Allilude _ : mon_Indicaled_Allilude _)

V (mode_Aclive_Verlical _ = ALTHOLD A lerm_Above_Transilion_Allilude _ = FALS

A Ierm_SYNC _ = TRU

A lerm_Reference_Allilude _ : mon_Indicaled_Allilude _)

V (_ (((_ mode_Active_Vertical = ALTHOLD) A mode_Active_Vertical'= ALTHOLD A

lerm_Above_Transilion_Allilude _ : TRU A lerm_SYNC _ : FALS)

V (mode_Aclive_Verlical _ : ALTHOLD A lerm_Above_Transilion_Allilude _ : TRU A

lerm_SYNC I = TRU)

V ((_ mode_Aclive_Verlical : ALTHOLD) A mode_Aclive_Verlical _ : ALTHOLD A

lerm_Above_Transilion_Allilude _ : FALS A lerm_SYNC _ : FALS)

V (mode_Aclive_Verlical _ : ALTHOLD A lerm_Above_Transilion_Allilude _ : FALS

A lerm_SYNC' = TRU))

A term_Reference_Altitude _ = term_Reference_Altitude)
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_ Def_Of_term_Reference_Pitch

A aggr_References

A aggr_FCP_I(n obs

A aggr_Air_Data

ASYNC

The_Event

A aggr_Flighl_Modes

(mode_Active_Vertical 7_ PITCH A mode_Active_Vertical' = PITCH

A lerm_5'YNC _ = FALS'

A lerm_Reference_PilcU = mon_Pilch_Angld)

V (mode_Aclive_VerlicaF = PITCH A lerm_5'YNC _ = TRU

A lerm_Reference_PilcU = mon_Pilch_Angld)

V (mode_Active_Vertical = PITCH A mode_Aclive_VerlicaF = PITCH A

event = VS'_Pilch_Wheel_Changed

A term_Reference_Pitch' = max({-12, rain({20,

te_'.LRefe_'ence_Pitch + (te_'.L VS_Pitch_ Wheel_Rotation' div 2)})}))

v (7 ((mode_Active_Vertical 7_ PITCH A mode_Active_Vertical' = PITCH

A lerm_SYNC _ = FALS)

V (mode_Aclive_VerlicaF = PITCH A lerm_SYNC _ = TRU)

V (mode_Active_Vertical = PITCH A mode_Aclive_VerlicaF = PITCH A

event = VS'_Pilch_ Wheel_ Changed ))

A lerm_Reference_PilcU = term_Reference_Pitch)

_ Def_Of_term_Referenee_Roll

A aggr_References

A aggr_FCP_Kn obs

A aggr_Air_Dala

AS'YNC

The_Event

A aggr_Flighl_Modes

(mode_Active_Lateral 7_ ROLL_ROLL_HOLD A

mode_Aclive_LaleraF = ROLL_ROLL_HOLD A lerm_5'YNC _ = FALS'

A term_Reference_Roll' = ma,'({-27, rain({27, mon_Roll_Angle'})}))

V (mode_Active_Lateral' = ROLL_ROLL_HOLD A term_SYNC' = TRU

A term_Reference_Roll' = max'({-27, rain({27, mon_Roll_Angle'})}))

v (7 ((._o&_Active_L_te_._l ¢ ROLL_ROLL_HOLD /_

mode_Active_Lateral' = ROLL_ROLL_HOLD A lerm_SYNC' = FAL5')

V (mode_Aclive_LaleraF = ROLL_ROLL_HOLD A lerm_SYNC _= TRU))

A lerm_Reference_RolF = term_Reference_Roll)
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_ Def_Of_term_Reference_ Vertical_Speed

A aggr_References

A aggr_FCP_Kn obs

A aggr_Air_Dala

ASYNC

The_Even!

A aggr_Flighl_Modes

((_ (mode_Flighl_Direclor C FD_ON A mode_Aclive_Verlical = VS))

A (mode_Flighl_Direclor _ C FD_ON A mode_Aclive_VerlicaF = VS)

A Ierm_SYNC _ = FALS

A term_Reference_ Vertical_Speed _ = mort_ Vertical_Speed _)

V (mode_Flighl_Direclor _ C FD_ON A mode_Aclive_VerlicaF = V5'

A Ierm_SYNC _ = TRU

A term_Reference_ Vertical_Speed _ = mort_ Vertical_Speed _)

V (mode_Flighl_Direclor C FD_ON A mode_Aclive_Verlical = V5' A

Ierm_SYNC _ = FALS A evenl = Vb'_Pilch_Wheel_Changed

A lerm_Reference_Ver'lical_Speed' = ma_'({-50, rain({50,

lerm_Refer'ence_ Ver'lical_Speed + ler'm_ Vb'_Pilch_ Wheel_Rolalion } ) }) )

V (7 (((7 (mode_Flight_Director C FD_ON A mode_Active_Vertical = V5'))

A (mode_Flighl_Direclof E FD_ON A mode_Aclive_VerlicaF = V5')

A Ierm_SYNC I = FALS)

V (mode_Flighl_Direclor _ C FD_ON A mode_Aclive_VerlicaF = V5'

A Ierm_SYNC _ = TRU)

V (mode_Flighl_Direclor C FD_ON A mode_Aclive_Verlical = V5' A

Ierm_SYNC _ = FALS A evenl = Vb'_Pilch_Wheel_Changed))

A lerm_Reference_ Verlical_Speed _ = lerm_Reference_ Verlical_Speed)

i lnil_Of_lerm_Reference_IAS

aggr_References

lerm_Reference_IAS = 90

In the following schema, we multiply by 100 to get the desired precision.

_ Def_Of_term_Refer'ence_Mach

aggr'_Refer'ences

Speed_Of_Sound : I_

lerm_Refer'ence_Mach = (100 • lerm_Refer'ence_IAS) div Speed_Of_Sound

i Inil_Of_lerm_Reference_ Verlical_Speed

aggr_References

lerm_Reference_ Verlical_Speed = 0
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A.9 REQ Relations for Some Annunciations

We have implemented the tolerances for some annunciations here.

This tolerance is 0.5 degrees; so we multiply by 10 to use integers.

i EQ_Relfor_con_Selected_Heading_Annunciation

Variables

-5 < 10 • con_Selected_Heading_Annunciation - 10 • term_Selected_Heading < 5

This tolerance is for 20 feet.

i EQ_Relfor_con_Presel_Alt_Annunc

Variables

-20 < con_Preselected_Altitude_Annunciation - term_Preselected_Altitude < 20

This tolerance is for 1 knot.

i EQ_Relfor_con_Reference_IAS_Annunciation

Variables

-1 <_ con_Reference_IAS_Annunciation - term_Reference_IAS <_ 1

This tolerance is for 0.05 kft/min. Since the ALTITUDE_RATE type is measured in 0.001

kft/min increments, we multiply by 1000 to get integers.

i EQ_Relfor_con_Reference_ VS_Annunciation

Variables

-50 _< con_Reference_ VS_Annunciation - term_Reference_Vertical_Speed <_ 50

A.IO More Term and Input Event Definitions

_ Def_Of_term_Overspeed

Overspeed

aggr_Air_Data

term_Overspeed = TRU ¢ez mode_Overspeed = TOO_FAST

_ Def_Of_term_Above_Transition_Altitude

Variables

term_Above_Transition_Altitude = TRU

¢:_ (mon_Pressure_Altitude <_ const_Transition_Altitude)
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_ Event_Nay_Source_Changed

A aggr_Nav_Source_Mons

A aggr_Nav_Source_Data

The_Event

event = Nav_Source_Changed iv

( mon_Selected_Nav_Source 7_ mon_Selected_Nav_Source _V

(( mon_Selected_Nav_Source_Frequency( mon_Selected_Nav_Source )

7£ mon_Selected_Nav_Source_Frequency(mon_Selected_Nav_Source _) A

te '.LSeleeted_Nav_Type {VOR, LOCi)))

_ Def_Of_term_Selected_Nav_Type

aggr_Nav_Source_Mons

aggr_Nav_Source_Dala

(mon_Selecled_Nav_Source C {FMS1, FMS2, FMS3}

A lerm_Selecled_Nav_Type = FMS)

V (mon_Selecled_Nav_Source C { VNR1, VNR2, VNR3, VNR4} A

mon_Nav_Source_Signal_Type ( mon_Selecled_Nav_Source ) = VO R A

lerm_Selecled_Nav_Type = VOR)

V (mon_Selecled_Nav_Source C { VNR1, VNR2, VNR3, VNR4} A

mon_Nav_Source_Signal_Type( mon_Selecled_Nav_Source ) = L OC A

lerm_Selecled_Nav_ Type = L OC)

We can use lerm_SYNC in the two definitions of input events below because of the definition of

term SYNC. These two definitions are a bit more convenient for use in Z/EVES.

_EvenI_SYNC_On

The_Event

ASYNC

event = SYNC_On

iV (lerm_SYNC = FALS A lerm_SYNC _ = TRU)

_EvenI_SYNC_Off

The_Event

ASYNC

event = SYNC_Off

iv (lerm_SYNC = TRU A lerm_SYNC _ = FALS)

_ Evenl_AP_Disconnecl_Bar_ Up

A aggr_FCP_Swilches

The_Event

(event = AP_Disconnecl_Bar_Up) iv

(mon_AP_Disconnecl_Bar = DOWN A mon_AP_Disconnecl_Bar _ = UP)
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_ Event_AP_Disconnect_Bar_Down
A aggr_FCP_Switches

The_Event

(event = AP_Disconnect_Bar_Down)

¢_z (mon_AP_Disconnect_Bar = UP A mon_AP_Disconnect_Bar _ = DOWN)

_ Event_Lateral_NAV_Track_Cond_Met

ALateral_Terms

The_Event

(event = Lateral_NA V_Track_Cond_Met)

¢_z (term_Lateral_NA V_Track_Cond_Met = FALS' A

term_Lateral_NA V_Track_Cond_MeF = TR U)

_ Event_Lateral_APPR_Track_Cond_Met

ALateral_Terms

The_Event

event = Laleral_APPR_Track_Cond_Met

¢_z ( lerm_Lateral_APPR_Track_Cond_Met = FALS' A

term_Lateral_APPR_Track_Cond_MeF = TRU)

_ Event_ Vert_APPR_Track_Cond_Met

A Vertical_Terms

The_Event

event = Vert_APPR_Track_Cond_Met ¢_z

term_ Vertical_APPR_Track_Cond_Met _ TRU A

term_ Vertical_APPR_Track_Cond_MeF = TR U

_ Event_Gone_Overspeed

A aggr_Air_Data

The_Event

event = Gone_Overspeed

¢:_ ( (_ (term_Above_Transition_Altitude = FALS'

A mort_Indicated_Airspeed > term_Vmo + 10) A

(term_Above_Transition_Altitude _ = FALS

A mort_Indicated_Airspeed _ > term_Vmo + 10)) V

(_ (term_Above_Transition_Altitude = TRU

A mon_Indicated_Mach_Number _ > term_Mmo + 3)

A term_Above_Transition_Altitude _= TRU

A mon_Indicated_Mach_Number _ > term_Mmo + 3))
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_ Event_Gone_Normal
Aaggr_Air_Data

The_Event

event = Gone_Normal

((7 (term_Above_Transition_Altitude = FALS' A

mort_Indicated_Airspeed < term_Vmo) A

term_Above_Transition_Altitude _ = FALS A

mort_Indicated_Airspeed _ < term_Vmo) V

(7 (term_Above_Transition_Altitude = TRU A

mon_Indicaled_Mach_Nnmber <_ lerm_Mmo) A

term_Above_Transition_Altitude _ = TRU A

mon_Indicaled_Mach_Nnmber I <_ lerm_Mmo) )

_ Event_ALTSEL_TRACK_Cond_Met

The_Event

AAltsel_Terms

event = AL TS'EL_TRA CI(_ Cond_Mel

(Ierm_ALTSEL_Cond 7£ ALTS'EL_COND_TRACI( A

Ie rm_A L TS'EL_ Co nd_ = A L TS'EL_ COND _ TRA CI()

_ EvenI_ALTS'EL_CAPTURE_Cond_Met

The_Event

AAltsel_Terms

event = ALTS'EL_CAPTURE_Cond_Mel

(Ierm_ALTSEL_Cond 7£ ALTS'EL_COND_CAPTURE A

lerm_ALTSEL_Cond _ = ALTS'EL_COND_CAPTURE)

i ef_Of_term_AP_Engaged

Aulopilol

lerm_AP_Engaged = TRU _ mode_Aulopilol E ENGAGED

_ REQ_Rel for_con_AP_Coupling

Aulopilol

(((mode_Aulopilol = DIS'ENGA GED_ WARNING)

V (mode_Aulopilol = DISENGAGED_NORMAL) V

(mode_Aulopilol = ENGAGED_SYNC))

A con_AP_Coupling = MANUAL) V

( mode_A ulopilol = ENGAGED_NORMAL

A con_AP_Coupling = FGS)
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_ Event_Land_On_Ground

A aggr_Air_Data

The_Event

event = Land_On_Ground _ mon_On_Ground = FALS A mort_On_Ground _ = TRU

_ REQ_Rel for_con_AP_Disengage_ Warning

Autopilot

((( m ode_A ut op ilot = DISENGA GED_NORMA L)

V (mode_Autopilot = ENGAGED_NORMAL) V

(mode_Autopilot = ENGAGED_SYNC))

A con_AP_Disengage_Warning = OFF) V

( mode_A utopilot = DISENGAGED_ WARNING

A con_AP_Disengage_Warning = ON)

_ Def_Of_term_Lateral_NAV_Track_Cond_Met

aggr_Nav_Source_Data

aggr_Nav_Source_Mons

Lateral_Terms

term_Lateral_NA V_Tracl;_Cond_Met = TR U

( term_Selected_Nav_Type C { VOR, LOC, FMS }

A mon_Selected_Nav_Source_Status = VALID

A term_Within_Lateral_NAV_Capture_Window = TRU)

_ Def_Of_term_Lateral_APPR_Track_Cond_Met

aggr_Nav_Source_Data

aggr_Nav_Source_Mons

Lateral_Terms

term_Lateral_APPR_Track_Cond_Met = TRU

( term_Selected_Nav_Type C { LOC, FMS }

A mon_Selecled_Nav_Source_Slalus = VALID

A term_ Wilhin_Laleral_APPR_Caplure_ Window = TR U)

_ Def_Of_term_Roll_LE_Threshold

aggr_Air_Data

Lateral_Terms

term_Roll_LE_Threshold = TRU

(mon_Roll_Angle <_ const_Roll_Selection_Threshold

A (-._on_Roll_Angle <_ eon_t_Roll_Seleetion__hre_hold))
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_ Def_Of_term_ Vertical_APPR_Track_Cond_Met

Vertical_ Terms

aggr_Nav_Source_Data

aggr_Nav_Source_Mons

term_ Vertical_APPR_Track_Cond_Met = TR U

_:> ( term_Selected_Nav_Type = LOC A

mon_S'elected_Nav_S'ource_Status = VALID A mon_ Valid_Glideslope = TRU

A term_Within_Vertical_APPR_Capture_Window = TRU)

In Transition INMODE_Requirement, we require that if an INMODE Boolean is TRU in a new

state, then the corresponding mode machine was in the specified mode in the old state.

_ Transition_INMODE_Requirement

AINMODE_Booleans

A Variables

Duration_INMODE_AP_Disengaged_ Warning_gt_ten_sec _ = TR U

( mode_A utopilot = DIS'ENGAGED_WARNING)

Duration_INMODE_ Vert_Appr_ Track_gt_const_min_armed_period _ = TR U

(mode_Vertical_Approach = VERT_APPR_TRA CK )

Duration_INMODE_NA V_ARMED_gt_const_min_armed_period _ = TR U

mode_Active_Lateral = NA V_ARMED

Duration_INMODE_APPR_ARMED_gt_const_min_armed_period _ = TRU

mode_Active_Lateral = L_APPR_ARMED

Duration_INMODE_AL TSEL_ARMED_gt_const_min_armed_period _ = TR U

mode_Altitude_Select = ALTSEL_ARMED

Duration_INMODE_AL TSEL_ CAPT_gt_const_min_armed_period _ = TR U

mode_Altitude_Select = ALTS'EL_CAPTURE

A.11 Lamp Annunciations

The following schemas describe the conditions under which these lamps are lit:

con_HDG_S'witch_Lamp, con_NA V_S'witch_Lamp,

con_APPR_Switch_Lamp, con_AL T_Switch_Lamp,

con_VS' Switch_Lamp, con_FLC_Switch Lamp, and

con_A P_Engaged_Switch_Lamp.

_ REQ_Rel for_con_HDG_Switch_Lamp

aggr_Flight_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_HDG_Switch_Lamp = UNLIT) V

(mode_Flight_Director E FD_ON A (mode_Active_Lateral 7_ HDG

A con_HDG_Switch_Lamp = UNLIT) V

mode_Active_Lateral = HDG A con_HDG_Switch_Lamp = LIT)
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_ REQ_Rel for_con_NA V_Switch_Lamp

aggr_Flight_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_NAV_Switch_Lamp = UNLIT) V

(mode_Flight_Director C FD_ON A (mode_Active_Lateral _ NAV

A con_NAV_Swilch_Lamp = UNLIT) V

mode_Aclive_Laleral C NAV A con_NAV_Swilch_Lamp = LIT)

_ REQ_Rel for_con_APPR_Switch_Lamp

aggr_Flighl_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_APPR_Swilch_Lamp = UNLIT) V

(mode_Flight_Director C FD_ON A (mode_Active_Lateral _ L_APPR

A con_APPR_Swilch_Lamp = UNLIT) V

mode_Aclive_Laleral C L_APPR A con_APPR_Swilch_Lamp = LIT)

_ REQ_Rel for_con_ALT_Switch_Lamp

aggr_Flighl_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_ALT_Swilch_Lamp = UNLIT) V

(mode_Flight_Director C FD_ON A (mode_Active_Vertical 7£ ALTHOLD

A con_ALT_Swilch_Lamp = UNLIT) V

mode_Active_Vertical = ALTHOLD A con_ALT_Swilch_Lamp = LIT)

_ REQ_Rel for_con_ VS_Switch_Lamp

aggr_Flighl_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_VS_Swilch_Lamp = UNLIT) V

(mode_Flight_Director C FD_ON A (mode_Active_Vertical 7£ VS'

A con_VS_Swilch_Lamp = UNLIT) V

mode_Active_Vertical = VS' A con_ VS_Swilch_Lamp = LIT)

_ REQ_Rel for_con_FL C_Swilch_Lamp

aggr_Flighl_Modes

aggr_FCP_Lamps

(mode_Flight_Director = FD_OFF A con_FLC_Swilch_Lamp = UNLIT) V

(mode_Flight_Director E FD_ON A (mode_Active_Vertical _ FLC

A con_FLC_Swilch_Lamp = UNLIT) V

mode_Active_Vertical C FLC A con_FLC_Swilch_Lamp = LIT)
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_ REQ_Relfor_con_AP_Engaged_Switch_Lamp

aggr_Flight_Modes

aggr_FCP_Lamps

Autopilot

(mode_Autopilot E DISENGAGED A con_AP_Engaged_Switch_Lamp = UNLIT) V

(mode_Autopilot E ENGAGED A con_AP_Engaged_Switch_Lamp = LIT)

A.12 Collections of Terms and Events

In the schema Conditioned Terms, we collect the definitions of the term variables that are defined

by formulas or condition tables. These can be included as invariants in the definition of State.

_ Conditioned_Terms

Def _Of _term_SYNC

Def _Of _term_Reference_Mach

Def _ Of _term_ Overspeed

Def _ Of _term_A bove_Transition_A ltitude

Def _Of _terrn_Selected_Nav_Type

Def _Of _term_AP_Engaged

Def _ Of _term_Lateral_NA V_Track_ Cond_Met

Def _Of _term_Lateral_APPR_Track_Cond_Met

Def _ Of _term_Roll_L E_Threshold

Def_Of_term_ Vertical_APPR_Track_Cond_Met

In the schema REQ_Relalions, we collect the REQ relations imposed on controlled variables.

_ REQ_Relations

REQ_Rel for_con_Selected_Heading_Annunciation

REQ_Rel for_con_Presel_Alt_Annunc

REQ_Rel for_con_Reference_IAS_Annunciation

REQ_Rel for_con_Reference_ VS'_Annunciation

REQ_Rel for_con_AP_Coupling

REQ_Rel for_con_AP_Disengage_ Warning

REQ_Rel for_con_HDG_Switch_Lamp

REQ_Rel for_con_NA V_Switch_Lamp

REQ_Rel for_con_APPR_Switch_Lamp

REQ_Rel for_con_AL T_Switch_Lamp

REQ_Rel for_con_ VS_Switch_Lamp

REQ_Rel for_con_FL C_Switch_Lamp

REQ_Rel for_con_AP_Engaged_Switch_Lamp

In the schema Events_And_Event_Terms, we collect term variables that are defined by event

tables, as well as the event definitions.
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_ Events_And_Event_Terms
Event_HDG_Switch_Pressed
Event_NAV_Switch_Pressed

Event_APPR_Switch_Pressed

Event_AL T_Switch_Pressed

Event_FL C_Switch_Pressed

Def _ Of _term_ VS_Pitch_ Wheel_Rotation

Event_ VS_Pitch_ Wheel_Changed

Def _Of _term_AL T_I(nob_Rotation

Event_AL T_Knob_ Changed

Def _ Of _term_Speed_I(nob_Rotation

Event_Speed_Knob_Changed

Def _Of _term_HDG_I(nob_Rotation

Event_HDG_Knob_ Changed

Event_AP_Engage_Switch_Pressed

Event_FD_Pressed

Event_AP_Disengage_Pressed

Event_GA_Pressed

Def _ Of _term_Selected_Heading

Def _ Of _term_Preselected_A ltitude

Def _Of _term_Reference_Heading

Def _Of _term_Reference_Pitch

Def _Of _term_Referenee_Roll

Def _Of_term_Referenee_ Vertical_Speed

Event_Nav_Source_ Changed

Transilion_INMODE_Requiremenl

Event_ VS_Switch_Pressed

Def _Of _lerm_Referenee_IAS

Def _ Of _lerm_Ref erence_A llilude

Event_SYNC_On

Event_SYNC_Off

Event_AP_Disconnect_Bar_ Up

Event_AP_Disconnect_Bar_Down

Event_Land_On_Ground

Event_Lateral_NA V_Track_ Cond_Met

Event_Lateral_APPR_Track_ Cond_Met

Event_ Vert_APPR_Track_Cond_Met

Evenl_ Gone_ Overspeed

Event_Gone_Normal

EvenI_AL TSEL_TRA CI(_ Cond_Mel

Event_AL TSEL_ CAPTURE_Cond_Met

Here we declare the state of the system, which consists of the values of the variables, as well as

invariants that define some of the term variables and controlled variables.
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_Slate

Variables
Conditioned_Terms

REQ_Relalions

Here we declare the transition of the system, which consists of an old state, a new state, an input

event, and invariants that define some of the term variables.

The_Event

Events_And_Event_Terms

The following schema is the mode machine initialization for mode_Flighl_Director.

i nit_Of_mode_Flight_Director

Slate

mode_Flight_Director = FD_OFF

The following mode machine initializations for

mode_Active_Lateral,

mode_Active_ Vertical,

mode_Altitude_Select, and

mode_ Vertical_Approach

are different from the CoRE initializations because we have simulated the sustaining conditions

of these mode machines using NOT_IN MODE modes. The CoRE initializations now appear as

transitions in the respective tables.

i nit_Of_mode_Active_Lateral

State

mode_Active_Lateral = LATERAL_NOT_IN_MODE

i nit_Of_mode_Active_ Vertical

State

mode_Active_Vertical = VERTICAL_NOT_IN_MODE

i nit_Of_mode_Allilude_Selecl

Slale

mode_Altitude_Select = ALTSEL_NOT_IN_MODE

i nil_Of_mode_ Vertical_Approach

Slale

mode_Vertical_Approach = VERT_APPR_NOT_IN_MODE
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_InilSlale

Slale

Init_Of _Overspeed

Inil_Of_Aulopilo!

Inil_ Of _mode_Flighl_Direelor

Inil_ Of _lerm_Seleeled_Headin 9

Inil_ Of _lerm_Preseleeled_A llilude

Init_Of _term_Referenee_IAS

Init_Of_term_Referenee_ Vertical_Speed

Inil_ Of _mode_A elive_Laleral

Inil_Of _mode_Aelive_ Verlieal

Inil_ Of _mode_A llilude_Selee!

Inil_Of_mode_ Verlieal_Approaeh

A.13 Invariants

This invariant arises from the CoRE sustaining condition imposed on four of the mode machines.

We have augmented the transition tables of these machines to preserve the invariant.

_ FD_Invarianl

Slate

mode_Flighl_Direclor = FD_OFF

(mode_Aclive_Laleral = LATERAL_NOT_IN_MODE A

mode_Aclive_ Verlical = VERTICAL_NOT_IN_MODE A

mode_Allilude_Selecl = ALTS'EL_NOT_IN_MODE A

mode_ Verlical_Approach = VERT_APPR_NOT_IN_MODE)

The following twelve invariants are translated from the CoRE specification.

i nvarianl_One

S'lale

mode_Aclive_Laleral = L_GA _ mode_Aulopilol E DIS'ENGAGED

_ Invarianl_Two

Slatemode_Aclive_ Verlical = V_GA _ mode_Aulopilol E DIS'ENGAGED

_ Invarianl_ Three

Slatelerm_AP_Engaged = TRU _ mode_Flight_Director E FD_ON
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_ Invarianl_Four

Slale

(mode_Flighl_Direclor E FD_ON A

mode_Aclive_Laleral E ROLL A

mon_On_Ground = TRU) _ mode_Aclive_Laleral = ROLL_HDG_HOLD

_ Invarianl_Five

Slale

(mode_Flighl_Direclor E FD_ON A mode_Aclive_Verlical = V_GA)

mode_Aclive_Laleral = L_GA

_ Invarianl_Six

Slale

(mode_Flighl_Direclor E FD_ON A

mode_Aclive_Laleral = NA V_ TRA CI()

lerm_Selecled_Nav_Type E { VOR, LOC, FMS}

_Invarianl_Seven

Slale

mode_Flighl_Direclor E FD_ON

(mode_Allilude_Selecl = ALTSEL_CLEARED

¢? mode_Aclive_ Verlical E { V_APPR, V_GA, ALTHOLD})

_Invarianl_Eighl

Slate

mode_Flighl_Direclor E FD_ON

( mode_Allilude_Selecl E AL TSEL_A CTIVE

¢? mode_Aclive_ Verlical E { V_APPR, V_GA, ALTHOLD})

_ Invarianl_Nine

Slale

mode_Flighl_Direclor E FD_ON _ ( mode_Allilude_Selecl E AL TSEL_A CTIVE

¢? mode_Aclive_ Verlical = ALTSEL)

_ Invarianl_Ten

Slale

mode_Flighl_Direclor E FD_ON

( mode_ Verlical_Approach = VERT_APPR_TRA CI(

¢? mode_Aclive_ Vertical = V_APPR)
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_ Invarianl_Eleven

Slale

mode_Flighl_Direclor 6 FD_ON

(lerm_Overspeed = TRU

¢:_ mode_Active_Vertical C {ALTSEL, ALTHOLD, V_APPR, FLC_OVERSPEED})

_ Invarianl_Twelve

Slale

mode_Flighl_Direclor E FD_ON

(mode_Active_Lateral = L_GA _ mode_Active_Vertical = V_GA)

_ Legal_Slale

Slale

FD_Invarian!

Invarianl_One

Invarianl_Two

Invarianl_Three

Invarianl_Four

Invarianl_Five

Invarianl_Six

Invarianl_Seven

Invarianl_Eigh!

Invarianl_Nine

Invarianl_Ten

Invarianl_Eleven

Invarianl_Twelve

A.14 Transition Tables

_ mode_Overspeed_Transilion_One

Transilion

(mode_Overspeed = SPEED_OK A

(7 (lerm_Above_Transilion_Allilude = FALS A mon_Indicaled_Airspeed > lerm_Vmo + 10)

A (term_Above_Transition_Altitude' = FALS A mon_Indicated_Airspeed' > term_Vmo + 10))

A mode_Overspeed _ = TOO_FAST)

_ mode_Overspeed_Transilion_Two

Transilion

(mode_Overspeed = SPEED_OK A

(7 (term_Above_Transition_Altitude = TRU A mon_Indicaled_Mach_Number _ > lerm_Mmo + 3)

A lerm_Above_Transilion_Allilude _= TRU A mon_Indicaled_Mach_Number _ > lerm_Mmo + 3)

A mode_Overspeed _ = TOO_FAST)
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_ mode_Overspeed_Transition_Three

Transition

(mode_Overspeed = TOO_FAST A

(7 (term_Above_Transition_Altitude = FALS A mort_Indicated_Airspeed <_ term_Vmo)

A term_Above_Transition_Altitude' = FALS A mort_Indicated_Airspeed _ <_ term_Vmo)

A mode_Overspeed _ = SPEED_ON)

_ mode_Overspeed_Transition_Four

Transition

(mode_Overspeed = TOO_FAST

A (7 (term_Above_Transition_Altitude = TRU A mon_Indicated_Mach_Number <_ term_Mmo)

A term_Above_Transition_Altitudd = TRU A mon_Indicated_Mach_Number _ <_ term_Mmo)

A mode_Overspeed _ = SPEED_OK)

_ mode_Overspeed_Transition_Five

Transition

(7 ((mode_Overspeed = SPEED_ON A

(7 (term_Above_Transition_Altitude = FALS A mon_Indieated_Airspeed > term_Vmo + 10)

A (term_Above_Transition_Altitude' = FALS A mon_Indicated_Airspeed' > term_Vmo + 10)))

V (mode_Overspeed = SPEED_ON A

(7 (term_Above_Transition_Altitude = TRU A mon_Indicated_Mach_Nnmber _ > term_Mmo + 3)

A term_Above_Transition_Altitudd = TRU A mon_Indicated_Mach_Nnmber _ > term_Mmo + 3))

V (mode_Overspeed = TOO_FAST A

(7 (term_Above_Transition_Altitude = FALS A mort_Indicated_Airspeed <_ term_Vmo)

A term_Above_Transition_Altitudd = FALS A mort_Indicated_Airspeed _ <_ term_Vmo))

V (mode_Overspeed = TOO_FAST

A (7 (term_Above_Transition_Altitude = TRU A mon_Indicated_Mach_Nnmber <_ term_Mmo)

A term_Above_Transition_Altitudd = TRU A mon_Indicated_Mach_Nnmber _ <_ term_Mmo)))

A mode_Overspeed _ = mode_Overspeed)

mode_Overspeed_Transition_Table _-

mode_Overspeed_Transition_One V

mode_Overspeed_Transition_Two V

mode_Overspeed_Transition_Three V

mode_Overspeed_Transition_Four V

mode_Overspeed_Transition_Five

_ mode_Antopilot_Transition_One

Transition

((event = AP_Engage_Switch_Pressed A mon_AP_Disconnect_Bar = UP

A mode_Antopilot E DISENGAGED)

A mode_Antopiloff = ENGAGED_NORMAL)
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_ mode_Aulopilol_Transilion_Two

Transilion

((evenl = AP_Disengage_Pressed A mode_Aulopilol E ENGAGED)

A mode_Aulopilol' = DIS'ENGAGED_NORMAL)

_ mode_Aulopilol_Transilion_Three

Transilion

((mode_Aulopilol E ENGAGED A mon_AP_Disconnecl_Bar 7_ DOWN

A mon_AP_Disconnecl_Bar _ = DOWN)

A mode_Aulopilol = DIS'ENGAGED_NORMAL)

_ mode_Aulopilol_Transilion_Four

Transilion

((mode_Aulopilol E ENGAGED A

((._od__Ac_iw_La_.al ¢ L_GA /_ ._od__Ac_iw_La_._l' = L_GA) V

(mode_Aclive_ Verlical 7_ V_GA A mode_Aclive_ Verlical' = V_GA)))

A mode_Aulopilol _= DIS'ENGAGED_WARNING)

_ mode_Aulopilol_Transilion_Five

Transilion

((mode_Aulopilol = ENGAGED_NORMAL A

lerm_SYNC = FALS A lerm_SYNC _ = TRU)

A mode_Aulopilol _= ENGAGED_SYNC)

_ mode_Aulopilol_Transilion_Six

Transilion

((mode_Aulopilol = ENGAGED_SYNC A

lerm_SYNC _ = FALS A lerm_SYNC = TRU)

A mode_Aulopilol _= ENGAGED_NORMAL)

_ mode_Aulopilol_Transilion_Seven

Transilion

((mode_Aulopilol = DISENGAGED_WARNING A

Duralion_INMODE_AP_Disengaged_ Warning_gl_len_sec = FALS A

Duralion_INMODE_AP_Disengaged_ Warning_gl_len_sec _ = TR U)

A mode_Aulopilol _= DIS'ENGAGED_NORMAL)
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_ mode_Autopilot_Transition_Eight

Transition

(7 (((event = AP_Engage_Swilch_Pressed A mon_AP_Disconnecl_Bar = UP

A mode_Aulopilol E DISENGAGED))

V ((event = AP_Disengage_Pressed A mode_Aulopilol E ENGAGED))

V ((mode_Aulopilol E ENGAGED A mon_AP_Disconnecl_Bar 7_ DOWN

A mon_AP_Diseonneel_Bar' = DOWN))

V ((mode_Aulopilol E ENGAGED A

((._ode_Aetive_iate_'al # L_GA A ._ode_Aetive_iate_'_l' = L_GA) V

(mode_Active_Vertical 7_ V_GA A mode_Active_Vertical' = V_GA))))

V ((mode_Aulopilol = ENGAGED_NORMAL A

lerm_SYNC = FALS A lerm_SYNC' = TRU))

V ((mode_Aulopilol = ENGAGED_SYNC A

lerm_SYNC' = FALS A lerm_SYNC = TRU))

V ((mode_Aulopilol = DISENGAGED_WARNING A

Duralion_INMODE_AP_Disengaged_ Warning_gl_len_sec = FALS A

Duralion_INM O D E_A P_Disengaged_ Warning_gl_len_see' = TR U ) ) )

A mode_Autopilot' = mode_Autopilot)

mode_A ulopilol_Transilion_Table _-

mode_Aulopilol_Transilion_One V

mode_Aulopilol_Transilion_Two V

mode_Autopilot_Transition_Three V

mode_Autopilot_Transition_Four V

mode_Aulopilol_Transilion_Five V

mode_Autopilot_Transition_Six V

mode_Autopilot_Transition_Seven V

mode_A utopilot_Transition_Eight

_ mode_Flight_Director_Transition_One

Transition

((event E Flight_Mode_Requested A mode_Flight_Director = FD_OFF)

A mode_Flight_Director' = FD_ON_CUES)

_ mode_Flight_Director_ Transition_ Two

Transition

((event = Gone_Overspeed A mode_Flight_Director = FD_OFF)

A mode_Flight_Director' = FD_ON_CUES)
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_ mode_Flight_Director_ Transition_ Three

Transition

((event = AP_Engage_Swilch_Pressed A

(mode_Aulopilol _ ENGAGED A mode_Aulopilol' E ENGAGED)

A mode_Flight_Director = FD_OFF)

A mode_Flight_Director _ = FD_ON_CUES)

_ mode_Flight_Director_Transition_Four

Transition

((event = FD_Pressed A mode_Flight_Director = FD_OFF)

A mode_Flight_Director _ = FD_ON_CUES)

_ mode_Flight_Director_Transition_Five

Transition

((event = FD_Pressed A

mode_Flight_Director E FD_ON A term_Overspeed = FALS'

A term_AP_Engaged = FALS)

A mode_Flight_Director _ = FD_OFF)

_ mode_Flight_Director_Transition_Six

Transition

(mode_Flight_Director = FD_ON_NO_CUES A

event = FD_Pressed A

(lerm_AP_Engaged = TRU V lerm_Overspeed = TRU)

A mode_Flighl_Direclor = FD_ON_CUES')

_ mode_Flight_Director_Transition_Seven

Transition

((mode_Flight_Director = FD_ON_NO_CUES A event = Gone_Overspeed)

A mode_Flight_Director = FD_ON_CUES)

_ mode_Flight_Director_Transition_Eight

Transition

(mode_Flight_Director = FD_ON_CUES A

event = FD_Pressed A

(lerm_AP_Engaged = TRU V lerm_Overspeed = TRU)

A mode_Flighl_Direclor = FD_ON_NO_CUES')
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_ mode_Flight_Director_Transition_Nine

Transition

(7 (((event E Flight_Mode_Requested A mode_Flight_Director = FD_OFF))

V ((event = Gone_Overspeed A mode_Flight_Director = FD_OFF))

V ((event = AP_Engage_Switeh_Pressed A

(mode_Aulopilol _ ENGAGED A mode_AulopiloF E ENGAGED)

A mode_Flight_Director = FD_OFF))

V ((event = FD_Pressed A mode_Flight_Director = FD_OFF))

V ((event = FD_Pressed A

mode_Flight_Director E FD_ON A lerm_Overspeed = FALS'

A lerm_AP_Engaged = FALS))

V (mode_Flight_Director = FD_ON_NO_CUES' A

event = FD_Pressed A

(lerm_AP_Engaged = TRU V lerm_Overspeed = TRU))

v ((mode_Flight_Director = FD_ON_NO_CUES' A event = Gone_Overspeed))

V (mode_Flight_Director = FD_ON_CUES A

event = FD_Pressed A

(lerm_AP_Engaged = TRU V lerm_Overspeed = TRU)))

A mode_Flighl_Direclor _ = mode_Flighl_Direclor)

mode_Flight_Director_Transition_Table _-

mode_Flight_Director_Transition_One V

mode_Flighl_Direelor_Transilion_Two V

mode_Flight_Director_Transition_Three V

mode_Flight_Director_Transition_Four V

mode_Flight_Director_Transition_Five V

mode_Flight_Director_Transition_Six V

mode_Flight_Director_Transition_Seven V

mode_Flight_Director_Transition_Eight V

mode_Flight_Director_Transition_Nine

_ mode_Aclive_Laleral_Transilion_One

Transition

(mode_Flight_Director 7£ FD_OFF A mode_Flight_Director _ = FD_OFF

A mode_Aclive_LaleraF= LATERAL_NOT_IN_MODE)

_ mode_Aclive_Laleral_Transilion_Two

Transition

(mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7£ FD_OFF A

event _ Lateral_Mode_Requested A event 7£ GA_Pressed

A mode_Aclive_LaleraF E ROLL)
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_ mode_Active_Lateral_Transition_Three

Transition

((event = HDG_Switeh_Pressed A mode_Active_Lateral = ItDG)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Four

Transition

((event = NAV_Switch_Pressed A mode_Active_Lateral 6 NAV)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Five

Transition

((event = Nav_Source_Changed A mode_Active_Lateral 6 NAV)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Six

Transition

((event = APPR_Switch_Pressed A mode_Active_Lateral 6 L_APPR)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Seven

Transition

((event = Nav_Source_Changed A mode_Active_Lateral 6 L_APPR)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Eight

Transition

((term_AP_Engaged 7_ TRU A term_AP_Engaged _ = TRU

A mode_Active_Lateral = L_GA)

A mode_Active_Lateral _6 ROLL)

_ mode_Active_Lateral_Transition_Nine

Transition

((term_SYNC = FALS A term_SYNC _ = TRU A mode_Active_Lateral = L_GA)

A mode_Active_Lateral _6 ROLL)

80



_ mode_Aclive_Laleral_Transilion_Ten

Transilion

((mode_Active_Vertical = V_GA A mode_Active_ VerticaV 7_ V_GA A

mode_Aclive_Laleral = L_GA A even! 6 Verlical_Evenls \ Laleral_Evenls)

A mode_Aclive_Laleral _6 ROLL)

_ mode_Aclive_Laleral_Transilion_Eleven

Transilion

(( evenl = HDG_Swilch_Pressed A mode_Aclive_Laleral 7_ HDG)

A mode_Active_Lateral _= HDG)

_ mode_Active_Lateral_Transition_Twelve

Transition

((event = NAY_Switch_Pressed A mode_Aclive_Laleral' _ NAV)

A mode_Active_Lateral _= NAV_ARMED)

_ mode_Active_Lateral_Transition_Thirteen

Transition

((event = APPR_Swilch_Pressed A mode_Active_Lateral _ L_APPR)

A mode_Active_Lateral _= L_APPR_ARMED)

_ mode_Active_Lateral_Transition_Fourteen

Transition

((evenl = GA_Pressed A mode_Aclive_Laleral 7_ L_GA)

A mode_Aclive_Laleral _= L_GA)

_ mode_Aclive_Laleral_Transilion_Fifleen

Transition

(mode_Active_Lateral _ ROLL A mode_Aclive_LaleraV E ROLL

A (lerm_Roll_LE_Threshold = TRU V mon_On_Ground = TRU)

A mode_Active_Lateral _= ROLL_HDG_HOLD)

_ mode_Active_Lateral_Transition_Sixteen

Transition

(_ (Ierm_SYNC = TRU A lerm_Roll_LE_Threshold = TRU)

A (Ier'm_SYNC _ = TRU A lerm_Roll_LE_Threshold _ = TRU)

A mode_Aclive_Laleral = ROLL_ROLL_HOLD

A mode_Aclive_Laleral _= ROLL_HDG_HOLD)
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_ mode_Active_Lateral_Transition_Seventeen
Transition

(lerm_AP_Engaged = FALS A lerm_AP_Engaged _ = TRU A

lerm_Roll_LE_Threshold = TRU A mode_Active_Lateral = ROLL_ROLL_HOLD

A mode_Active_Lateral _= ROLL_HDG_HOLD)

_ mode_Aclive_Laleral_Transilion_Eighlee_

Transition

(mon_On_Ground = FALS A mon_On_Ground _ = TRU

A mode_Active_Lateral = ROLL_ROLL_HOLD

A mode_Active_Lateral _= ROLL_HDG_HOLD)

_ mode_Active_Lateral_Transition_Nineteen

Transition

((mode_Active_Lateral _ ROLL A mode_Active_Lateral _ C ROLL

A lerm_Roll_LE_Threshold = FALS A mon_On_Ground = FALS)

A mode_Active_Lateral = ROLL_ROLL_HOLD)

_ mode_Active_Lateral_Transition_Twenty

Transition

((mode_Active_Lateral = ROLL_HDG_HOLD A

(lerm_SYNC = TRU A lerm_Roll_LE_Threshold = FALS A mon_On_Ground = FALS)

A lerm_SYNC _ = TRU A lerm_Roll_LE_Threshold _ = FALS A

mon_On_Ground I = FALS)

A mode_Active_Lateral _= ROLL_HDG_HOLD)

_ mode_Aclive_Laleral_Transilion_TwenlyOne

Transition

((mode_Active_Lateral = ROLL_HDG_HOLD A lerm_AP_Engaged = FALS A

lerm_AP_Engaged _ = TRU A lerm_Roll_LE_Threshold = TRU)

A mode_Active_Lateral _= ROLL_ROLL_HOLD)

_ mode_Aclive_Laleral_Transilion_TwenlyTwo

Transition

(mode_Active_Lateral = NAV_ARMED A

( Duralion_INMODE_NA V_ARMED_gl_consl_min_armed_period = TRU

A lerm_Laleral_NAV_Tracl__Cond_Mel = TRU) A

Duralion_INMODE_NA V_ARMED_gl_consl_min_armed_period _ = TRU A

lerm_Laleral_NA V_ Tracl__Cond_Mel _ = TR U

A mode_Active_LateralS= NAV_TRACI()
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_ mode_Aclive_Laleral_Transilion_TwenlyThree

fransilion

(((mode_Active_Lateral = L_APPR_ARMED A

(Duralion_INMODE_APPR_ARMED_gl_consl_min_armed_period = FALS A

Duralion_INMODE_APPR_ARMED_gl_consl_min_armed_period' = TRU) ) )

A mode_Active_Lateral'= L_APPR_TRACI()
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_ mode_Active_Lateral_Transition_TwentyFour

Transition

(7 ((mode_Flight_Director 7£ FD_OFF A mode_Flight_Director'= FD_OFF)

V (mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7£ FD_OFF A

event _ Lateral_Mode_Requested A event 7£ GA_Pressed)

V ((event = HDG_Swilch_Pressed A mode_Active_Lateral = HDG))

V ((evenl = NAV_5'wilch_Pressed A mode_Aclive_Laleral 6 NAV))

V ((event = Nav_Source_Changed A mode_Active_Lateral C NAV))

V ((evenl = APPR_5'wilch_Pressed A mode_Aclive_Laleral 6 L_APPR))

V ((event = Nav_Source_Changed A mode_Active_Lateral C L_APPR))

V ((lerm_AP_Engaged 7£ TRU A lerm_AP_Engaged _ = TRU

A mode_Active_Lateral = L_GA))

V ((lerm_SYNC = FALS A lerm_SYNC' = TRU A mode_Aclive_Laleral = L_GA))

V ((mode_Active_Vertical = V_GA A mode_Active_VerticaV 7£ V_GA A

mode_Active_Lateral = L_GA A event 6 Vertical_Events \ Lateral_Events))

V ((event = HDG_Switch_Pressed A mode_Active_Lateral 7£ HDG))

V ((event = NAV_Switch_Pressed A mode_Active_Lateral' _ NAV))

V ((event = APPR_Switch_Pressed A mode_Active_Lateral (_ L_APPR))

V ((event = GA_Pressed A mode_Active_Lateral 7£ L_GA))

V (mode_Active_Lateral _ ROLL A mode_Active_Lateral _ 6 ROLL

A (lerm_Roll_LE_Threshold = TRU V mon_On_Ground = TRU))

V (7 (lerm_SYNC = TRU A lerm_Roll_LE_Threshold = TRU)

A (term_SYNC _ = TRU A term_Roll_LE_Threshold _ = TRU)

A mode_Active_Lateral = ROLL_ROLL_HOLD)

V (term_AP_Engaged = FALS A term_AP_Engaged _ = TRU A

term_Roll_LE_Threshold = TRU A mode_Active_Lateral = ROLL_ROLL_HOLD)

V (mon_On_Ground = FALS A mon_On_Ground _ = TRU

A mode_Active_Lateral = ROLL_ROLL_HOLD)

V ((mode_Active_Lateral _ ROLL A mode_Active_Lateral _ 6 ROLL

A term_Roll_LE_Threshold = FALS A mon_On_Ground = FALS))

V ((mode_Active_Lateral = ROLL_HDG_HOLD A

(term_SYNC = TRU A term_Roll_LE_Threshold = FALS A mon_On_Ground = FALS)

A terrn_SYNC _ = TRU A term_Roll_LE_Threshold _ = FALS A

mon_On_Ground' = FALS))

V ((mode_Active_Lateral = ROLL_HDG_HOLD A term_AP_Engaged = FALS A

term_AP_Engaged _ = TRU A term_Roll_LE_Threshold = TRU))

V (mode_Active_Lateral = NAV_ARMED A

( Duration_INMODE_NA V_ARMED_gt_const_min_armed_period = TRU

A term_Lateral_NAV_Tracl__Cond_Met = TRU) A

Duration_INMODE_NA V_ARMED_gt_const_min_armed_period _ = TRU A

term_Lateral_NA V_Track_Cond_MeP = TR U)

V (((mode_Active_Lateral = L_APPR_ARMED A

(Duration_INMODE_APPR_ARMED_gt_const_min_armed_period = FALS A

Duration_INMODE_APPR_ARMED_gt_const_min_armed_period' = TRU) ) )) )

A mode_Active_Lateral _= mode_Active_Lateral)
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mode_Aclive_Laleral_Transilion_Table _-

mode_Aclive_Laleral_Transilion_One V

mode_Active_Lateral_Transition_Two V

mode_Active_Lateral_Transition_Three V

mode_Active_Lateral_Transition_Four V

mode_Active_Lateral_Transition_Five V

mode_Active_Lateral_Transition_Six V

mode_Active_Lateral_Transition_Seven V

mode_Active_Lateral_Transition_Eight V

mode_Active_Lateral_Transition_Nine V

mode_Active_Lateral_Transition_Ten V

mode_Active_Lateral_Transition_Eleven V

mode_Active_Lateral_Transition_Twelve V

mode_Active_Lateral_Transition_Thirteen V

mode_Active_Lateral_Transition_Fourteen V

mode_Active_Lateral_Transition_Fifteen V

mode_Active_Lateral_Transition_Sixteen V

mode_Active_Lateral_Transition_Seventeen V

mode_Active_Lateral_Transition_Eighteen V

mode_Active_Lateral_Transition_Nineteen V

mode_Active_Lateral_Transition_Twenty V

mode_Active_Lateral_Transition_TwentyOne V

mode_Active_Lateral_Transition_TwentyTwo V

mode_Active_Lateral_Transition_TwentyThree V

mode_Active_Lateral_Transition_TwentyFour

_ mode_Active_ Vertical_Transition_One

Transition

(mode_Flight_Director 7£ FD_OFF A mode_Flight_Director _ = FD_OFF

A mode_Active_Vertical _ = VERTICAL_NOT_IN_MODE)

_ mode_Active_ Vertical_Transition_Two

Transition

(mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7£ FD_OFF A

event _ Verlieal_Mode_Requested

A mode_Active_VerticalS= PITCH)

_ mode_Active_ Vertical_Transition_Three

Transition

(event = SYNC_On A mode_Active_Vertical = V_GA

A mode_Active_VerticalS= PITCH)
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_ mode_Active_ VertieaLTransition_Four

Transition

((event = VS_Piteh_ Wheel_Changed

A (mode_Active_Vertical C VERTICAL_MODE \ { VS', V_APPR, ALTS'EL, PITCH}))

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VertieaLTransition_Five

Transition

((7 (mode_Altitude_Select C ALTSEL_ACTIVE) A

mode-Altitude-Select _ C AL TSEL_A CTIVE A mode_Active_ Vertical 7£ AL TSEL)

A mode_Active_Vertical _ = ALTSEL)

_ mode_Active_ VertieaLTransition_Six

Transition

(term_Preselected_Altitude _7£ term_Preselected_Altitude A

mode_Altitude_Select = ALTSEL_CAPTURE A mode_Active_Vertical = ALTSEL

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VertieaLTransition_Seven

Transition

(( term_Preseleeted_Altitude _ 7£ term_Preseleeted_Altitude A

mode_Altitude_Select = AL TSEL_TRA CI( A mode_Active_ Vertical = AL TSEL)

A mode_Active_Vertical _ = ALTHOLD)

_ mode_Active_ VertieaLTransition_Eight

Transition

(event = ALT_Swilch_Pressed A mode_Active_Vertical _ { V_APPR, ALTHOLD}

A mode_Aclive_VerlicaV = ALTHOLD)

_ mode_Active_ VerlicaLTransilion_Nine

Transition

(event = ALT_Swilch_Pressed A mode_Active_Vertical = ALTHOLD

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VerlicaLTransilion_Ten

Transition

(event = VS_Swilch_Pressed A

mode_Active_Vertical _ { V_APPR, VS'}

A mode_Aclive_VerlicaV = VS)
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_ mode_Active_ VerticaLTransition_Eleven

Transition

((event = VS'_5'witch_Pressed A mode_Active_Vertical = VS')

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VerticaLTransition_Twelve

Transition

((event = FLC_Switch_Pressed A

mode_Active_ Vertical _ { V_APPR, FL C_TRA CI(, FL C_O VERSPEED })

A mode_Active_Vertical _ 6 FLC)

_ mode_Active_ VerticaLTransition_Thirteen

Transition

(event = FLC_Switch_Pressed A mode_Active_Vertical 6 FLC

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VerticaLTransition_Fourteen

Transition

(mode_Active_Vertical _ (FLC U {ALTS'EL, ALTHOLD, V_APPR}) A

term_Overspeed = FALS A term_Overspeed _ = TRU

A mode_Active_Vertical _ 6 FLC)

_ mode_Active_ VerticaLTransition_Fifteen

Transition

(mode_Vertical_Approach 7_ VERT_APPR_TRA CI(

A mode_Vertical_Approach _ = VERT_APPR_TRACI(

A mode_Active_Vertical 7_ V_APPR

A mode_Active_Vertical _ = V_APPR)

_ mode_Active_ VerticaLTransition_Sixteen

Transition

(7 (event = GA_Pressed) A mode_Vertical_Approach = VERT_APPR_TRACI( A

mode_ Vertical_Approach_ 7L VERT_APPR_TRA CI( A mode_Active_Vertical = V_APPR

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VerticaLTransition_Seventeen

Transition

((event = GA_Pressed A mode_Active_ Vertical 7_ V_GA )

A mode_Active_Vertical _ = V_GA)
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_ mode_Active_ VerticaLTransition_Eighteen

Transition

((mode_Active_Lateral = L_GA A mode_Active_Lateral _7_ L_GA A

mode_Active_Vertical = V_GA A event C Lateral_Events \ Vertical_Events)

A mode_Active_VerticalS= PITCH)

_ mode_Active_ VerlicaLTransilion_Nineleen

Transition

((._ode_Active_ Vertical _t _L C A

mode-Active-Vertical _ 6 FLC A _ (lerm_Overspeed = FALS A lerrn_Overspeed _= TRU))

A mode_Active_VerticalS= FLC_TRACI()

_ mode_Active_ VerlicaLTransilion_Twenly

Transition

(lerm_Overspeed = TRU A lerrn_Overspeed _ = FALS A

mode_Active_ Vertical = FL C_O VERSPEED

A mode_Active_VerticalS= FLC_TRACK)

_ mode_Active_ VerlicaLTransilion_TwenlyOne

Transition

(mode_Active_ Vertical _ FL C A

mode-Active-Vertical _ 6 FLC A lerm_Overspeed = FAL5' A lerm_Overspeed _ = TRU

A mode_Active_ Vertical _ = FL C_O VERSPEED)

_ mode_Active_ VerlicaLTransilion_TwenlyTwo

Transition

(lerm_Overspeed = FALS A lerrn_Overspeed _ = TRU

A mode_Active_Vertical = FLC_TRACI(

A mode_Active_ Vertical _ = FL C_O VERSPEED)
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_ mode_Active_ Vertical_Transition_TwentyThree

Transition

(7 ((mode_Flight_Director 7£ FD_OFF A mode_Flight_Director'= FD_OFF)

V (mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7£ FD_OFF A

event _ Vertical_Mode_Requested)

V (event = 5'YNC_On A mode_Active_Vertical = V_GA)

V ((event = VS'_Pilch_ Wheel_Changed

A (mode_Active_Vertical 6 VERTICAL_MODE \ { VS', V_APPR, ALTS'EL, PITCH})))

V ((7 (mode_Altitude_Select C ALTSEL_ACTIVE) A

mode-Altitude-Select _ 6 AL TS'EL_A CTIVE A mode_Active_ Vertical 7£ AL TS'EL) )

V (lerm_Preselecled_Allilnde _ 7£ lerm_Preselecled_Allilnde A

mode_Altitude_Select = ALTS'EL_CAPTURE A mode_Active_Vertical = ALTS'EL)

V ((term_Preselected_Altitnde _ 7£ term_Preselected_Altitnde A

mode_Altitude_Select = ALTSEL_TRACK A mode_Active_ Vertical = ALTS'EL))

V (event = ALT_S'witch_Pressed A mode_Active_Vertical _ { V_APPR, ALTHOLD})

V (event = ALT_5'wilch_Pressed A mode_Active_Vertical = ALTHOLD)

V (event = VS'_S'witch_Pressed A

mode_Active_Vertical _ { V_APPR, VS})

V ((event = VS'_Swilch_Pressed A mode_Active_Vertical = VS))

V ((event = FLC_S'wilch_Pressed A

mode_Active_ Vertical (_ { V_APPR, FL C_TRA CI(, FL C_O VERSPEED }))

V (event = FLC_Swilch_Pressed A mode_Active_Vertical 6 FLC)

V (mode_Active_Vertical _ (FLC U {ALTS'EL, ALTHOLD, V_APPR}) A

lerm_Overspeed = FALS A lerrn_Overspeed _ = TRU)

V (mode_Vertical_Approach 7£ VERT_APPR_TRACI(

A mode_Vertical_Approach _ = VERT_APPR_TRACI(

A mode_Active_Vertical 7£ V_APPR)

V (7 (event = GA_Pressed) A mode_Vertical_Approach = VERT_APPR_TRACI( A

mode_ Verlical_ApproacU T£ VERT_APPR_TRA CI( A mode_Active_Vertical = V_APPR)

V ((event = GA_Pressed A mode_Active_Vertical 7£ V_GA))

V ((mode_Active_Lateral = L_GA A mode_Active_Lateral _ 7£ L_GA A

mode_Active_Vertical = V_GA A event 6 Lateral_Events \ Vertical_Events))

V ((mode_Active_Vertical _ FLC A

mode_Active_Vertical' 6 FLC A _ (lerm_Overspeed = FALS' A lerm_Overspeed' = TRU)))

V (lerm_Overspeed = TRU A lerm_Overspeed _ = FALS' A

mode_Active_ Vertical = FL C_O VERS'PEED)

V (mode_Active_Vertical _ FLC A

mode-Active-Vertical _ 6 FLC A lerm_Overspeed = FALS' A lerm_Overspeed _ = TRU)

V (lerm_Overspeed = FALS' A lerm_Overspeed _= TRU

A mode_Active_Vertical = FLC_TRACI())

A mode_Active_Vertical _ = mode_Active_Vertical)
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mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

mode_Active_

Jertical_Transition_Table _-

Jertical_Transition_One V

Jertical_Transition_Two V

Jertical_Transition_Three I/

Jertical_Transition_Four I/

Jertical_Transition_Five V

Jertical_Transition_Si_" I/

Jertical_Transition_Seven I/

Jertical_Transition_Eight I/

Jertical_Transition_Nine V

Jertical_Transition_Ten I/

Jertical_Transition_Eleven V

Jertical_Transition_Twelve V

Jertical_Transition_Thirteen I/

Jertical_Transition_Fourteen I/

Jertical_Transition_Fifteen V

Jertical_Transition_Si_'teen I/

Jertical_Transition_Seventeen I/

Jertical_Transition_Eighteen I/

Jertical_Transition_Nineteen I/

Jertical_Transition_Twenty I/

Jertical_Transition_TwentyOne I/

Jertical_Transition_TwentyTwo I/

Jertical_ Transition_ Twenty Three

_ mode_Altitude_Select_Transition_One

Transition

(mode_Flight_Director 7_ FD_OFF A mode_Flight_Director _ = FD_OFF

A mode_Altitnde_Selecg = ALTSEL_NOT_IN_MODE)

_ mode_Altitude_Select_Transition_Two

Transition

(mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7_ FD_OFF

A mode_Altitnde_Selecg = ALTSEL_ARMED)

_ mode_Altitude_Select_Transition_Three

Transition

((mode_Active_Vertical E { V_APPR, V_GA, ALTHOLD} A

(mode_Active_Vertical' C { V_APPR, V_GA, ALTHOLD})

A mode_Altitude_Select = ALTSEL_CLEARED)

A mode_Altitnde_Selecg = ALTSEL_ARMED)
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_ mode_Allilude_Selecl_Transilion_Four

Transilion

((mode_Aclive_Verlical' 6 { V_APPR, V_GA, ALTHOLD} A

(mode_Aclive_Verlical 6 { V_APPR, V_GA, ALTHOLD}) A

mode_Allilude_Selecl 6 ALTS'EL_ENABLED)

A mode_Allilude_Selecl _ = ALTS'EL_CLEARED)

_ mode_Allilude_Selecl_Transilion_Five

Transilion

(mode_Allilude_Selecl = ALTS'EL_ARMED A

(lerm_ALTSEL_Cond = ALTSEL_COND_CAPTURE A

Duralion_INMODE_AL TS'EL_ARMED_gl_consl_rr_in_armed_period = TR U ) A

(lerm_ALTSEL_Cond _ = ALTSEL_COND_CAPTURE A

Duralion_INMODE_AL TS'EL_ARMED_gl_consl_rr_in_armed_period _ = TR U )

A mode_Allilude_Selecl = ALTSEL_CAPTURE)

_ mode_Allilude_Selecl_Transilion_Six

Transilion

((mode_Aclive_ Verlical C { V_APPR, V_GA, ALTIIOLD, ALTSEL} A

(mode_Aclive_ VerlicaV C { V_APPR, V_GA, ALTIIOLD, ALTSEL}) A

mode_Allilude_Selecl C ALTSEL_ACTIVE)

A mode_Allilude_Selecl _ = ALTS'EL_ARMED)

_ mode_Allilude_Selecl_Transilion_Seven

Transilion

(mode_Allilude_Selecl = ALTSEL_CAPTURE A

(Ierm_ALTSEL_Cond = ALTSEL_COND_TRACK A

Duralion_INMODE_AL TSEL_ CAPT_gl_consl_rr_in_armed_period = TR U ) A

(Ierm_ALTSEL_Cond _ = ALTSEL_COND_TRACK A

Duralion_INMODE_AL TS'EL_ CAPT_gl_consl_rr_in_armed_period _ = TR U )

A mode_Allilude_Selecl _ = ALTSEL_TRACK)
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_ mode_Allilude_Selecl_Transilion_Eighl

Transilion

(_ ((mode_Flighl_Direclor 7_ FD_OFF A mode_Flighl_DirecloH = FD_OFF)

V (mode_Flighl_Direclor = FD_OFF A mode_Flighl_DirecloH 7_ FD_OFF)

V ((mode_Aclive_Verlical C { V_APPR, V_GA, ALTItOLD} A

(mode-Aclive-Verlical _ 6 { V_APPR, V_GA, ALTHOLD})

A mode_Allilude_Selecl = ALTSEL_CLEARED))

V ((mode_Active_Vertical' C { V_APPR, V_GA, ALTItOLD} A

(mode_Active_Vertical 6 { V_APPR, V_GA, ALTHOLD}) A

mode_Altitude_Select C ALTSEL_ENABLED))

V (mode_Altitude_Select = ALTS'EL_ARMED A

(lerm_ALTSEL_Cond = ALTSEL_COND_CAPTURE A

Duralion_INMODE_AL TS'EL_ARMED_gl_consl_min_armed_period = TR U ) A

(lerm_ALTSEL_Cond _ = ALTSEL_COND_CAPTURE A

Duralion_INMODE_AL TS'EL_ARMED_gl_consl_min_armed_period _ = TR U ) )

V ((mode_Active_Vertical C { V_APPR, V_GA, ALTItOLD, ALTSEL} A

(mode-Active-Vertical _ C { V_APPR, V_GA, ALTItOLD, ALTSEL}) A

mode_Altitude_Select C AL TSEL_A CTIVE) )

V (mode_Allilude_Selecl = ALTS'EL_CAPTURE A

(term_ALTSEL_Cond = ALTSEL_COND_TRACI; A

Duralion_INMODE_AL TSEL_ CAPT_gl_consl_min_armed_period = TR U ) A

(term_ALTSEL_Cond _ = ALTSEL_COND_TRACI; A

Duration_INMODE_AL TSEL_CAPT_gt_const_min_armed_period' = TRU) ) )

A mode_Allilude_Selecl _ = mode_Allilude_Selecl)

mode_Allilude_Selecl_Transilion_Table _-

mode_Allilude_Selecl_Transilion_One V

mode_Allilude_Selecl_Transilion_Two V

mode_Allilude_Selecl_Transilion_Three V

mode_Allilude_Selecl_Transilion_Four V

mode_Allilude_Selecl_Transilion_Five V

mode_Allilude_Selecl_Transilion_Six V

mode_Allilude_Selecl_Transilion_Seven V

mode_Allilude_Selecl_Transilion_Eighl

_ mode_ Vertical_Approach_Transition_One

Transition

(mode_Flight_Director 7_ FD_OFF A mode_Flight_Director _ = FD_OFF

A mode_Vertical_Approach _ = VERT_APPR_NOT_IN_MODE)

_ mode_ Vertical_Approach_Transition_Two

Transition

(mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7_ FD_OFF

A mode_Vertical_Approach _ = VERT_APPR_CLEARED)
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_ mode_ Vertical_Approach_Transition_Three

Transition

((mode_Active_Lateral 7_ L_APPR_TRA CI( A
mode_Active_Lateral _ = L_APPR_TRA CI( A

mode_Vertical_Approach = VERT_APPR_CLEARED)

A mode_Vertical_Approach _ = VERT_APPR_ARMED)

_ mode_ Vertical_Approach_Transition_Four

Transition

((mode_Active_Lateral = L_APPR_TRA CI( A mode_Active_Lateral _ 7_ L_APPR_TRA CI(

A mode_Vertical_Approach C VERT_APPR_ENABLED)

A mode_Vertical_Approach _ = VERT_APPR_CLEARED)

_ mode_ Vertical_Approach_Transition_Five

Transition

(mode_Vertical_Approach = VERT_APPR_ARMED A

( term_ Vertical_APPR_Track_Cond_Met = TRU A

Duration_INMODE_ Vert_Appr_Track_gt_const_min_armed_period = TR U) A

(term_ Vertical_APPR_Track_Cond_MeP = TRU A

Duration_INMODE_ Vert_Appr_ Track_gt_const_min_armed_period _ = TR U)

A mode_Vertical_Approach _ = VERT_APPR_TRACI()

_ mode_ Vertical_Approach_Transition_Six

Transition

(7 ((mode_Flight_Director 7_ FD_OFF A mode_Flight_Director'= FD_OFF)

V (mode_Flight_Director = FD_OFF A mode_Flight_Director _ 7_ FD_OFF)

V ((mode_Active_Lateral 7_ L_APPR_TRACI( A

mode_Active_Lateral _ = L_APPR_TRA CI( A

mode_Vertical_Approach = VERT_APPR_CLEARED))

V ((mode_Active_Lateral = L_APPR_TRACI( A mode_Active_Lateral _ 7_ L_APPR_TRACI(

A mode_Vertical_Approach E VERT_APPR_ENABLED))

V (mode_Vertical_Approach = VERT_APPR_ARMED A

( term_ Vertical_APPR_Track_Cond_Met = TRU A

Duration_INMODE_ Vert_Appr_Track_gt_const_min_armed_period = TR U) A

(term_ Vertical_APPR_Track_Cond_MeP = TRU A

Duration_INMODE_ Vert_Appr_ Track_gt_const_min_armed_period' = TR U) ) )

A mode_Vertical_ApproacU = mode_Vertical_Approach)

93



H_odc_

H_odc_

H_odc_

H_odc_

H_odc_

H_odc_

H_odc_

Jerlical_Approach_Transilion_Table _-

Jerlical_Approach_Transilion_One V

Jerlical_Approach_Transilion_Two V

Jerlical_Approach_Transilion_Three V

Jerlical_Approach_Transilion_Four V

Jerlical_Approach_Transilion_Five V

Jerlical_Approach_Transilion_Si_"

_ Transilion_Tables

mode_Overspeed_Transilion_Table

mode_A ulopilol_Transilion_Table

mode_Flighl_Direclor_Transilion_Table

mode_Aclive_Laleral_Transilion_Table

mode_Aclive_ Verlical_ Transilion_Table

mode_Allilude_Selecl_Transilion_Table

mode_ Verlical_Approach_Transilion_Table
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